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Abstract: The PC and FCI algorithms are popular constraint-based methods for learning the structure
of directed acyclic graphs (DAGs) in the absence and presence of latent and selection variables,
respectively. These algorithms (and their order-independent variants, PC-stable and FCI-stable)
have been shown to be consistent for learning sparse high-dimensional DAGs based on partial
correlations. However, inferring conditional independences from partial correlations is valid if the
data are jointly Gaussian or generated from a linear structural equation model—an assumption that
may be violated in many applications. To broaden the scope of high-dimensional causal structure
learning, we propose nonparametric variants of the PC-stable and FCI-stable algorithms that employ
the conditional distance covariance (CdCov) to test for conditional independence relationships. As the
key theoretical contribution, we prove that the high-dimensional consistency of the PC-stable and FCI-
stable algorithms carry over to general distributions over DAGs when we implement CdCov-based
nonparametric tests for conditional independence. Numerical studies demonstrate that our proposed
algorithms perform nearly as good as the PC-stable and FCI-stable for Gaussian distributions, and
offer advantages in non-Gaussian graphical models.

Keywords: causal structure learning; consistency; FCI algorithm; high dimensionality; nonparametric
testing; PC algorithm

1. Introduction
Directed acyclic graphs (DAGs) are commonly used to represent causal relationships

among random variables [1–3]. The PC algorithm [3] is the most popular constraint-
based method for learning DAGs from observational data under the assumption of causal
sufficiency, i.e., when there are no unmeasured common causes and no selection variables.
It first estimates the skeleton of a DAG by recursively performing a sequence of conditional
independence tests, and then uses the information from the conditional independence
relations to partially orient the edges, resulting in a completed partially directed acyclic
graph (CPDAG). In Section 2, we provide a review of these and other notions commonly
used in the graphical modeling literature that are relevant to our work. In addition, we
refer to estimating the CPDAG as structure learning of the underlying DAG throughout
the rest of the paper.

Observational studies often involve latent and selection variables, which complicate
the causal structure learning problem. Ignoring such unmeasured variables can make the
causal inference based on the PC algorithm erroneous; see, e.g., Section 1.2 in [4] for some
illustrations. The Fast Causal Inference (FCI) algorithm and its variants [3–6] utilize similar
strategies as the PC algorithm to learn the DAG structure in the presence of latent and
selection variables.

Both PC and FCI algorithms adopt a hierarchical search strategy—they recursively
perform conditional independence tests given subsets of increasingly larger cardinalities
in some appropriate search pool. The PC algorithm is usually order-dependent, in the
sense that its output depends on the order in which pairs of adjacent vertices and subsets
of their adjacency sets are considered. The FCI algorithm suffers from a similar limitation.
To overcome this limitation, Ref. [7] proposed two variants of the PC and FCI algorithms,
namely the PC-stable and FCI-stable algorithms that resolve the order dependence at
different stages of the algorithms.
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In general, testing for conditional independence is a problem of central importance in
the causal structure learning. The literature on the PC and FCI algorithms predominantly
uses partial correlations to infer conditional independence relations. It is well-known that
the characterization of conditional independence by partial correlations, or, in other words,
equivalence between conditional independence and zero partial correlations only holds for
multivariate normal random variables. Therefore, the high-dimensional consistency results
for the PC and FCI algorithms [4,8] are limited to Gaussian graphical models, where the
nodes correspond to random variables with a joint Gaussian distribution. Although the
Gaussian graphical model is the standard parametric model for continuous data, it may not
hold in many real data applications. Although this limitation can be somewhat relaxed by
considering linear structural equation models (SEMs) with general noise distributions [9],
linear SEMs and joint Gaussianity are essentially equivalent [10]. Moreover, neither ap-
proach is appropriate when the observations are categorical, discrete, or are supported on
a subset of the real line. In Section 4.3, for example, we present a real application where
all the observed variables are categorical, and therefore far from being Gaussian. As an
improvement, ref. [11] used rank-based partial correlations to test for conditional indepen-
dence relations, showing that the high-dimensional consistency of the PC algorithm holds
for a broader class of Gaussian copula models. Some nonparametric versions of the PC
algorithm have been also proposed in the literature via kernel-based tests for conditional
independence [12,13]; however, they lack theoretical justifications of the correctness of the
algorithms, and are not studied in high dimensions.

This work aims to broaden the applicability of the PC-stable and FCI-stable algorithms
to general distributions by employing a nonparametric test for conditional independence
relationships. To this end, we utilize recent developments on dependence metrics that
quantify nonlinear and non-monotone dependence between multivariate random variables.
More specifically, our work builds on the idea of distance covariance (dCov) proposed
by [14] and its extension to conditional distance covariance (CdCov) by [15] as a nonpara-
metric measure of nonlinear and non-monotone conditional independence between two
random vectors of arbitrary dimensions given a third. Utilizing this flexibility, we use
the conditional distance covariance (CdCov) to test for conditional independence relation-
ships in the sample versions of the PC-stable and FCI-stable algorithms. The resulting
algorithms—which, for distinction, are termed nonPC and nonFCI—facilitate causal struc-
ture learning from general distributions over DAGs and are shown to be consistent in sparse
high-dimensional settings. We establish the consistency of the proposed algorithms using
some moment and tail conditions on the variables, without requiring strict distributional
assumptions. To our knowledge, the proposed generalizations of PC/PC-stable or the
FCI/FCI-stable algorithms provide the first general nonparametric framework for causal
structure learning with theoretical guarantees in high dimensions.

The rest of the paper is organized as follows: In Section 2, we review the relevant
background, including preliminaries on graphical modeling (Section 2.1), an outline of
the PC-stable and FCI-stable algorithms (Section 2.2) and a brief overview of dCov and
CdCov (Section 2.3). The nonparametric version of the PC-stable algorithm is presented in
Section 3.1. As a key contribution of the paper, we establish that the algorithm consistently
estimates the skeleton and the equivalence class of the underlying sparse high-dimensional
DAG in a general nonparametric framework. We then present the nonparametric version
of the FCI-stable algorithm in Section 3.2 and establish its consistency in sparse high-
dimensional settings. As the FCI involves the adjacency search of the PC algorithm, any
improvement on the PC/PC-stable directly carries over to the FCI/FCI-stable as well. In
Section 4, we compare the performances of our algorithms with the PC-stable and FCI-
stable using both simulated datasets (involving both Gaussian and non-Gaussian examples),
as well as a real dataset. These numerical studies clearly demonstrate that nonPC and
nonFCI algorithms are comparable with PC-stable and FCI-stable for Gaussian data and
offer improvements for non-Gaussian data.
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2. Background
2.1. Preliminaries on Graphical Modeling

We start with introducing some necessary terminologies and background information.
Our notations and terminologies follow standard conventions in graphical modeling (see,
e.g., [3]). A graph G = (V, E) consists of a vertex set V = {1, . . . , p} and an edge set
E ⊆ V × V. In a graphical model, the vertices or nodes are associated with random
variables Xa for 1 ≤ a ≤ p. Throughout, we index the nodes by the corresponding
random variables. We also allow the edge set E of the graph G to contain (a subset of) the
following six types of edges: → (directed),↔ (bidirected), − (undirected), ◦−◦ (nondirected),
◦− (partially undirected) and ◦→ (partially directed). The endpoints of an edge are called
marks, which can be tails, arrowheads or circles. A “◦” at the end of an edge indicates it
is not known whether an arrowhead should occur at that place. We use the symbol ‘?’ to
denote an arbitrary edge mark; for example, the symbol ?→ represents an edge of the type
→,↔ or ◦→ in the graph. A mixed graph is a graph containing directed, bidirected and
undirected edges. A graph containing only directed edges (→) is called a directed graph,
one containing only undirected edges (−) is called an undirected graph, and one containing
directed and undirected edges is called a partially directed graph.

The adjacency set of a vertex Xa in the graph G = (V, E), denoted adj(G, Xa), is the set
of all vertices in V that are adjacent to Xa, or, in other words, are connected to Xa by an edge.
The degree of a vertex Xa, |adj(G, Xa)|, is defined as the number of vertices adjacent to it.
A graph is complete if all pairs of vertices in the graph are adjacent. A vertex Xb ∈ adj(G, Xa)
is called a parent of Xa if Xb → Xa, a child of Xa if Xa → Xb and a neighbor of Xa if Xa − Xb.
The skeleton of the graph G is the undirected graph obtained by replacing all the edges of
G by undirected edges, in other words, ignoring all the edge orientations. Three vertices
〈Xa, Xb, Xc〉 are called an unshielded triple if Xa and Xb are adjacent, Xb and Xc are adjacent,
but Xa and Xc are not adjacent. A path is a sequence of distinct adjacent vertices. A
node Xa is an ancestor of its descendent Xb, if G contains a directed path Xa → · · · → Xb.
A non-endpoint vertex Xa on a path is called a collider on the path if both the edges
preceding and succeeding it have an arrowhead at Xa, or, in other words, the path contains
?→ Xa ←?. An unshielded triple 〈Xa, Xb, Xc〉 is called a v-structure if Xb is a collider on the
path 〈Xa, Xb, Xc〉.

A cycle occurs in a graph when there is a path from Xa to Xb, and Xa and Xb are adjacent.
A directed path from Xa to Xb forms a directed cycle together with the edge Xb → Xa, and it
forms an almost directed cycle together with the edge Xb ↔ Xa. Three vertices that form a
cycle are called a triangle. A directed acyclic graph (DAG) is a directed graph that does not
contain any cycle. A DAG entails conditional independence relationships via a graphical
criterion called d-separation (Section 1.2.3 in [16]). Two vertices Xa and Xb that are not
adjacent in a DAG G are d-separated in G by a subset XS ⊆ V\{Xa, Xb}. A probability
distribution P on Rp is said to be faithful with respect to the DAG G if the conditional
independence relationships in P can be inferred from G using d-separation and vice versa;
in other words, Xa ⊥⊥ Xb|XS if and only if Xa and Xb are d-separated in G by XS.

A graph that is both (partially) directed and acyclic is called a partially directed acyclic
graph (PDAG). DAGs that encode the same set of conditional independence relations form a
Markov equivalence class [17]. Two DAGs belong to the same Markov equivalence class if
and only if they have the same skeleton and the same v-structures. A Markov equivalence
class of DAGs can be uniquely represented by a completed partially directed acyclic graph
(CPDAG), which is a PDAG that satisfies the following: (i) Xa → Xb in the CPDAG if
Xa → Xb in every DAG in the Markov equivalence class, and (ii) Xa − Xb in the CPDAG
if the Markov equivalence class contains a DAG in which Xa → Xb as well as a DAG in
which Xa ← Xb.

2.2. The PC-Stable and FCI-Stable Algorithms
In this section, we provide an outline of the PC/PC-stable and FCI/FCI-stable algo-

rithms. Estimation of the CPDAG by the PC algorithm involves two steps: (1) estimation
of the skeleton and separating sets (also called the adjacency search step); and (2) partial
orientation of edges; see Algorithms 1 and 2 in [8] for details.
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Intuitively, the PC algorithm works as follows. In the first step (the adjacency search
step), the algorithm starts with a complete undirected graph Then, for conditioning sets of
increasing cardinality, k = 0, 1, . . ., the algorithm removed an edge Xa −Xb if Xa and Xb are
conditionally independent given a subset S of size k chosen among the current neighbors
of nodes a and b. This process continues up to the order q− 1, where q is the maximum
degree of the underlying DAG. By searching over the neighboring nodes, the algorithm
is adaptive and can efficiently infer sparse high-dimensional DAGs, where the sparsity is
characterized by the maximum node degree, q.

In the presence of latent and selection variables, one needs a generalization of an
DAG, called a maximal ancestral graph (MAG). A mixed graph is called an ancestral graph if
it contains no directed or almost directed cycles and no subgraph of the type Xa − Xb ←
? Xc. DAGs form a subset of ancestral graphs. A MAG is an ancestral graph in which
every missing edge corresponds to a conditional independence relationship via the m-
separation criterion [18], a generalization of the notion of d-separation. Multiple MAGs
may represent the same set of conditional independence relations. Such MAGs form a
Markov equivalence class which can be represented by a partial ancestral graph (PAG) [19];
see [18] for additional details.

Under the faithfulness assumption, the Markov equivalence class of a DAG with latent
and selection variables can be learned using the FCI algorithm (e.g., Algorithm 3.1 in [4]),
which is a modification of the PC algorithm. The FCI algorithm first employs the adjacency
search of the PC algorithm, and then performs additional conditional independence queries
because of the presence of latent variables followed by partial orientation of the edges,
resulting in an estimated PAG. The FCI algorithm adopts the same hierarchical search
strategy as the PC algorithm: It starts with a complete undirected graph and recursively
removes edges via conditional independence queries given subsets of increasingly larger
cardinalities in some appropriate search pool.

The PC algorithm is usually order-dependent, in the sense that its output depends
on the order in which pairs of adjacent vertices and subsets of their adjacency sets are
considered. The FCI algorithm suffers from a similar limitation, as it shares the adjacency
search step of the PC algorithm as its first step. To overcome this limitation, ref. [7] proposed
variants of the PC and FCI algorithms, namely the PC-stable and FCI-stable algorithms
that resolve the order dependence at different stages of the algorithms. The basic difference
between the PC algorithm and the PC-stable algorithm is that, in the adjacency search
step, the latter computes and stores the adjacency sets of all the variables after each new
cardinality, k = 0, 1, . . ., of the conditioning sets. These stored adjacency sets are then used
to search for conditioning sets of this given size k. As a consequence, the removal of an
edge no longer affects which conditional independence relations need to be checked for
other pairs of variables at this given size of the conditioning sets.

We would refer the reader to Appendix A, where we provide in full detail the pseu-
docodes of the oracle versions of the PC-stable and FCI-stable algorithms. In the oracle
versions of the algorithms, it is assumed that perfect knowledge is available about all the
necessary conditional independence relations. As such, conditional independence relations
are not estimated from data. Of course, this perfect knowledge is not available in practice.
Sample versions of the PC-stable and FCI-stable algorithms can be obtained by replacing
the conditional independence queries by a suitable test for conditional independence at
some pre-specified level. For example, if the variables are jointly Gaussian, one can test for
zero partial correlations (see, e.g., [8]). The next subsection is devoted to discussions on
nonparametric tests for independence and conditional independence.

2.3. Distance Covariance and Conditional Distance Covariance
We start by describing the notation used throughout the paper. We denote by ‖ · ‖p

the Euclidean norm of Rp and use ‖ · ‖ when the dimension is clear from the context. We
use X ⊥⊥ Y to denote the independence of X and Y and use EU to denote expectation with
respect to the probability distribution of the random variable U. For any set S, we denote
its cardinality by |S|.

We use the usual asymptotic notation, ‘O’ and ‘o’, as well as their probabilistic coun-
terparts, Op and op, which denote stochastic boundedness and convergence in probability,
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respectively. For two sequences of real numbers {an}∞
n=1 and {bn}∞

n=1, an � bn if and only
if an/bn = O(1) and bn/an = O(1) as n → ∞. We use the symbol “a . b” to indicate
that a ≤ C b for some constant C > 0. For a matrix A = (akl)

n
k,l=1 ∈ Rn×n, we denote its

determinant by |A| and define its U -centered version Ã = (ãkl)
n
k,l=1 as

ãkl =

akl −
1

n− 2

n

∑
j=1

akj −
1

n− 2

n

∑
i=1

ail +
1

(n− 1)(n− 2)

n

∑
i,j=1

aij, k 6= l,

0, k = l,
(1)

for k, l = 1, . . . , n. We denote the indicator function of any set A by 1(A). Finally, we denote
the integer part of a ∈ R by bac.

Ref. [14], in their seminal paper, introduced the notion of distance covariance (dCov,
henceforth) to quantify nonlinear and non-monotone dependence between two random
vectors of arbitrary dimensions. Consider two random vectors X ∈ Rp and Y ∈ Rq with
E‖X‖p < ∞ and E‖Y‖q < ∞. The distance covariance between X and Y is defined as the
positive square root of

dCov2(X, Y) =
1

cpcq

∫
Rp+q

| fX,Y(t, s)− fX(t) fY(s)|2

‖t‖1+p
p ‖s‖1+q

q
dtds

where fX, fY and fX,Y are the individual and joint characteristic functions of X and Y,
respectively, and cp = π(1+p)/2/ Γ((1 + p)/2) is a constant with Γ(·) being the complete
gamma function.

The key feature of dCov is that it completely characterizes the independence between
two random vectors, or in other words dCov(X, Y) = 0 if and only if X ⊥⊥ Y. According to
Remark 3 in [14], dCov can be equivalently expressed as

dCov2(X, Y) = E ‖X− X′‖p‖Y−Y′‖q + E ‖X− X′‖p E ‖Y−Y′‖q

− 2E ‖X− X′‖p‖Y−Y′′‖q .

This alternate expression comes handy in constructing V or U-statistic type estimators
for the quantity. For an observed random sample (Xi, Yi)

n
i=1 from the joint distribution of

X and Y, define the distance matrices dX =
(
dX

ij
)n

i,j=1 and dY =
(
dY

ij
)n

i,j=1 ∈ Rn×n, where

dX
ij := ‖Xi−Xj‖p and dY

ij := ‖Yi−Yj‖q. Following the U -centering idea in [20], an unbiased

U-statistic type estimator of dCov2(X, Y) can be expressed as

dCov2
n(X, Y) := (d̃ X · d̃ Y) :=

1
n(n− 3) ∑

i 6=j
d̃ X

ij d̃ Y
ij , (2)

where d̃ X = (d̃ X
ij )

n
i,j=1 and d̃ Y = (d̃ Y

ij )
n
i,j=1 are the U -centered versions of the matrices d X

and d Y, respectively, as defined in (1).
Ref. [15] generalized the notion of dCov and introduced the conditional distance co-

variance (CdCov, henceforth) as a measure of conditional dependence between two random
vectors of arbitrary dimensions given a third. CdCov essentially replaces the characteristic
functions used in the definition of dCov by conditional characteristic functions. Consider a
third random vector Z ∈ Rr with E(‖X‖p + ‖Y‖q | Z) < ∞. Denote by fX,Y|Z the condi-
tional joint characteristic function of X and Y given Z, and by fX|Z and fY|Z the conditional
marginal characteristic functions of X and Y given Z, respectively. Then, CdCov between
X and Y given Z is defined as the positive square root of

CdCov2(X, Y|Z) = 1
cpcq

∫
Rp+q

| fX,Y|Z(t, s)− fX|Z(t) fY|Z(s)|2

‖t‖1+p
p ‖s‖1+q

q
dtds.
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The key feature of CdCov is that CdCov (X, Y|Z) = 0 almost surely if and only if
X ⊥⊥ Y|Z, which is quite straightforward to see from the definition.

Similar to dCov, an equivalent alternative expression can be established for CdCov
that avoids complicated integrations involving conditional characteristic functions. Let
{Wi = (Xi, Yi, Zi)}n

i=1 be an i.i.d. sample from the joint distribution of W := (X, Y, Z).
Define dijkl :=

(
dX

ij + dX
kl − dX

ik − dX
jl
) (

dY
ij + dY

kl − dY
ik − dY

jl
)
, which is not symmetric with

respect to {i, j, k, l}, and therefore necessitates defining the following symmetric form:
dS

ijkl := dijkl + dijlk + dilkj. Lemma 1 in [15] establishes an equivalent representation of

CdCov2(X, Y|Z = z) as

CdCov2(X, Y|Z = z) =
1
12

E
[
dS

1234 | Z1 = z, Z2 = z, Z3 = z, Z4 = z
]

. (3)

Remark 1. In a recent work, [21] explore the connection between conditional independence mea-
sures induced by distances on a metric space and reproducing kernels associated with a reproducing
kernel Hilbert space (RKHS). They generalize CdCov to arbitrary metric spaces of negative type—
termed generalized CdCov (gCdCov)—and develop a kernel-based measure of conditional indepen-
dence, namely the Hilbert–Schmidt conditional independence criterion (HSCIC). Theorem 1 in their
paper establishes an equivalence between gCdCov and HSCIC, or, in other words, between distance
and kernel-based measures of conditional independence.

For w ∈ Rr, let KH(w) := |H|−1 K(H−1w) be a kernel function, where H is the
diagonal matrix diag(h, . . . , h) determined by a bandwidth parameter h. KH is typically
considered to be the Gaussian kernel KH(w) = (2π)−

r
2 |H|−1 exp

(
− 1

2 wT H−2w
)
, where

w ∈ Rr.
Let Kiu := KH(Zi − Zu) = |H|−1 K(H−1(Zi − Zu)) and Ki(Z) := KH(Z − Zi) for

1 ≤ i, u ≤ n. Then, by virtue of the equivalent representation of CdCov in (3), a V-statistic
type estimator of CdCov2(X, Y|Z) can be constructed as

CdCov2
n(X, Y|Z) := ∑

i,j,k,l

Ki(Z)Kj(Z)Kk(Z)Kl(Z)

12
(

∑n
i=1 Ki(Z)

)4 dS
ijkl . (4)

Under certain regularity conditions, Theorem 4 in [15] shows that, conditioned on Z,

CdCov2
n(X, Y|Z) P−→ CdCov2(X, Y|Z) as n→ ∞.

3. Methodology and Theory
3.1. The Nonparametric PC Algorithm in High Dimensions

To obtain a measure of conditional independence between X and Y given Z that is
free of Z, we define

ρ∗0 (X, Y|Z) := E
[
CdCov2

n(X, Y|Z)
]

. (5)

Clearly, ρ∗0 (X, Y|Z) = 0 if and only if X ⊥⊥ Y | Z. Consider a plug-in estimate of
ρ∗0 (X, Y|Z) as

ρ̂ ∗(X, Y|Z) :=
1
n

n

∑
u=1

CdCov2
n(X, Y|Zu) =

1
n

n

∑
u=1

∆i,j,k,l;u

where ∆i,j,k,l;u := ∑
i,j,k,l

Kiu Kju Kku Klu

12
(

∑n
i=1 Kiu

)4 dS
ijkl .

(6)

We reject H0 : X ⊥⊥ Y|Z vs HA : X 6⊥⊥ Y|Z at level α ∈ (0, 1) if ρ̂ ∗(X, Y|Z) > ξα,
for a suitably chosen threshold ξα. In Appendix A, we present a local bootstrap procedure
for choosing ξα in practice, which is also used in our numerical studies. Henceforth, we will
often denote ρ∗0 (X, Y|Z) and ρ̂ ∗(X, Y|Z) simply by ρ∗0 and ρ̂ ∗ respectively for notational
simplicity, whenever there is no confusion.
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In view of the complete characterization of conditional independence by ρ∗0 , we
propose testing for conditional independence relations nonparametrically in the sample
version of the PC-stable algorithm based on ρ∗0 , rather than partial correlations. We coin
the resulting algorithm the ‘nonPC’ algorithm, to emphasize that it is a nonparametric
generalization of parametric PC-stable algorithms.

The oracle version of the first step of nonPC, or the skeleton estimation step, is exactly
the same as that of the PC-stable algorithm (Algorithm A1 in Appendix A). The second
step, which extends the skeleton estimated in the first step to a CPDAG (Algorithm A2
in Appendix A), is comprised of some purely deterministic rules for edge orientations,
and is exactly the same for both the nonPC and PC-stable as well. The only difference
lies in the implementation of the tests for conditional independence relationships in the
sample versions of the first step. Specifically, we replace all the conditional independence
queries in the first step by tests based on ρ∗0 (X, Y|Z). At some pre-specified significance
level α, we infer that Xa ⊥⊥ Xb |XS when ρ̂ ∗(Xa, Xb|XS) ≤ ξn,α, where a, b ∈ V and S ⊆ V,
|S| 6= φ. When |S| = φ, ρ̂ ∗(Xa, Xb|XS) = dCov2

n(Xa, Xb) and ρ∗0 (X, Y|Z) = dCov2(X, Y).
The critical value ξn,α in this case is obtained by a bootstrap procedure (see, e.g., Section 4
in [22] with d = 2).

Given that the equivalence between conditional independence and zero partial correla-
tions only holds for multivariate normal random variables, our generalization broadens the
scope of applicability of causal structure learning by the PC/PC-stable algorithm to general
distributions over DAGs. This nonparametric approach is thus a natural extension of
Gaussian and Gaussian copula models. It enables capturing nonlinear and non-monotone
conditional dependence relationships among the variables, which partial correlations fail
to detect.

Next, we establish theoretical guarantees on the correctness of the nonPC algorithm
in learning the true underlying causal structure in sparse high-dimensional settings. Our
consistency results only require mild moment and tail conditions on the set of variables,
without making any strict distributional assumptions. Denote by mp the maximum car-
dinality of the conditioning sets considered in the adjacency search step of the PC-stable
algorithm. Clearly, mp ≤ q, where q := max1≤a≤p |adj(G, a) | is the maximum degree of
the DAG G. For a fixed pair of nodes a, b ∈ V, the conditioning sets considered in the
adjacency search step are elements of J

mp
a,b := {S ⊆ V\{a, b} : |S| ≤ mp}.

We first establish a concentration inequality that gives the rate at which the absolute
difference of ρ∗0 (Xa, Xb|XS) and its plug-in estimate ρ̂ ∗(Xa, Xb|XS) decays to zero, for any
fixed pair of nodes a and b ∈ V and a fixed conditioning set S. Towards that, we impose
the following regularity conditions.

(A1) There exists s0 > 0 such that, for 0 ≤ s < s0, sup
p

max
1≤a≤p

E exp(sX2
a) < ∞.

(A2) The kernel function K(·) is non-negative and uniformly bounded over its support.

Condition (A1) imposes a sub-exponential tail bound on the squares of the random
variables. This is a quite commonly used condition, for example, in the high-dimensional
feature screening literature (see, for example, [23]). Condition (A2) is a mild condition on
the kernel function K(·) that is guaranteed by many commonly used kernels, including
the Gaussian kernel. Under conditions (A1) and (A2), the next result shows that the
plug-in estimate ρ̂ ∗(Xa, Xb|XS) converges in probability to its population counterpart
ρ∗0 (Xa, Xb|XS) exponentially fast.

Theorem 1. Under conditions (A1) and (A2), for any ε > 0, there exist positive constants A, B
and γ ∈ (0, 1/4) such that

P(| ρ̂ ∗(Xa, Xb|XS)− ρ∗0 (Xa, Xb|XS) | > ε) ≤ O
(

2 exp
(
−A n1−2γ ε2

)
+ n4 exp

(
− B nγ

))
.

The proof of Theorem 1 is long and somewhat technical; it is thus relegated to
Appendix B. Theorem 1 serves as the main building block towards establishing the consis-
tency of the nonPC algorithm in sparse high-dimensional settings.
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For notational convenience, henceforth, we denote ρ∗0 (Xa, Xb|XS) and ρ̂ ∗(Xa, Xb|XS)
by ρ∗0 ; a b|S and ρ̂ ∗ab|S, respectively. In Theorem 2 below, we establish a uniform bound for
the errors in inferring conditional independence relationships using the ρ∗0-based test in the
skeleton estimation step of the sample version of the nonPC algorithm.

Theorem 2. Under conditions (A1) and (A2), for any ε > 0, there exist positive constants A, B
and γ ∈ (0, 1/4) such that

sup
a,b∈V
S∈J

mp
a,b

P
(
| ρ̂ ∗ab|S − ρ∗0 ; ab|S | > ε

)
≤ P

(
sup

a,b∈V
S∈J

mp
a,b

| ρ̂ ∗ab|S − ρ∗0 ; ab|S | > ε
)

≤ O
(

pmp+2 [ 2 exp
(
− A n1−2γ ε2) + n4 exp

(
− B nγ

)])
.

(7)

Next, we turn to proving the consistency of the nonPC algorithm in the high-dimensional
setting where the dimension p can be much larger than the sample size n, but the DAG is
considered to be sparse. We impose the following regularity conditions, which are similar
to the assumptions imposed in Section 3.1 of [8] in order to prove the consistency of the
PC algorithm for Gaussian graphical models. We let the number of variables p grow with
the sample size n and consider p = pn, and also the DAG G = Gn := (Vn, En) and the
distribution P = Pn.

(A3) The dimension pn grows at a rate such that the right-hand side of (7) tends to zero as
n→ ∞. In particular, this is satisfied when pn = O(nr) for any 0 ≤ r < ∞.

(A4) The maximum degree of the DAG Gn, denoted by qn := max1≤a≤pn |adj(Gn, a) |,
grows at the rate of O(n1−b), where 0 < b ≤ 1.

(A5) The distribution Pn is faithful to the DAG Gn for all n. In other words, for any a, b ∈ Vn

and S ∈ J
mpn
a,b ,

Xa and Xb are d-separated by XS ⇐⇒ Xa ⊥⊥ Xb |XS ⇐⇒ ρ∗0 ; a b|S = 0 .

Moreover, ρ∗0 ; a b|S values are uniformly bounded both from above and below. Formally,

Cmin : = inf
a,b∈Vn
S∈J

mpn
a,b

ρ∗0 ; ab|S 6=0

ρ∗0 ; ab|S ≥ λmin λ−1
min = O(nv)

and Cmax : = sup
a,b∈Vn
S∈J

mpn
a,b

ρ∗0 ; ab|S ≤ λmax

where λmax is a positive constant and 0 < v < 1/4.

Condition (A3) allows the dimension to grow at any arbitrary polynomial rate of the
sample size. Condition (A4) is a sparsity assumption on the underlying true DAG, allowing
the maximum degree of the DAG to also grow, but at a slower rate than n. Since mp ≤ qn,
we also have mp = O(n1−b). Finally, Condition (A5) is the strong faithfulness assumption
(Definition 1.3 in [24]) on Pn and is similar to condition (A4) in [8]. This essentially requires
ρ∗0 ; ab|S to be bounded away from zero when the vertices Xa and Xb are not d-separated by
XS. It is worth noting that the faithfulness assumption alone is not enough to prove the
consistency of the PC/PC-stable/nonPC algorithms in high-dimensional settings, and the
more stringent strong faithfulness condition is required.

Remark 2. For notational convenience, treat Xa, Xb and XS as X, Y and Z, respectively, for any
a, b ∈ Vn and S ∈ J

mpn
a,b . From Equation (3), we have

CdCov2(X, Y|Z) =
1

12
E
[

dS
1234 |Z1 = Z, . . . , Z4 = Z

]
,
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which implies

ρ∗0 = E [CdCov2(X, Y|Z)] =
1

12
E
[

dS
1234
]
=

1
12

E
[

d1234 + d1243 + d1432
]

.

Condition (A1) implies sup
p

max
1≤a≤p

E X2
a < ∞. With this and the definition of dijkl in Section 2.3, it

follows from some simple algebra and the Cauchy–Schwarz inequality that ρ∗0 < ∞. This provides a
justification for the second part of Assumption (A5) that sup

a,b∈Vn
S∈J

mpn
a,b

ρ∗0 ; ab|S ≤ λmax for some positive

constant λmax.

The next theorem establishes that the nonPC algorithm consistently estimates the
skeleton of a sparse high-dimensional DAG, thereby providing the necessary theoretical
guarantees to our proposed methodology. It is worth noting that, in the sample version of
the PC-stable and hence the nonPC algorithm, all the inference is done during the skeleton
estimation step. The second step that involves appropriately orienting the edges of the
estimated skeleton is purely deterministic (see Sections 4.2 and 4.3 in [7]). Therefore, to
prove the consistency of the nonPC algorithm in estimating the equivalence class of the
underlying true DAG, it is enough to prove the consistency of the estimated skeleton. We
include the detailed proof of Theorem 3 in Appendix B.

Theorem 3. Assume that Conditions (A1)–(A5) hold. Let Gskel,n be the true skeleton of the
graph Gn, and Ĝskel,n be the skeleton estimated by the nonPC algorithm. Then, as n → ∞,
P
(
Ĝskel,n = Gskel,n

)
→ 1.

Remark 3. In the proof of Theorem 3, we consider the threshold ξα to be of constant order. However,
the proof continues to work as long as ξα is of the same order as Cmin as n→ ∞.

3.2. The Nonparametric FCI Algorithm in High Dimensions
The FCI is a modification of the PC algorithm that accounts for latent and selection

variables. Thus, generalizations of the PC algorithm naturally extend to the FCI as well.
Similar to nonPC, we propose testing for conditional independence relations nonparamet-
rically in the sample version of the FCI-stable algorithm (Algorithm A3 in Appendix A)
based on ρ∗0 , instead of partial correlations. We coin the resulting algorithm the ‘nonFCI’
algorithm, to emphasize that it is a generalization of parametric FCI-stable algorithms.
Again, the oracle version of the nonFCI is exactly the same as that of the FCI-stable algo-
rithm. The difference is in the implementation of the tests for conditional independence
relationships in their sample versions. This broadens the scope of the FCI algorithm in causal
structural learning for observational data in the presence of latent and selection variables
when Gaussianity is not a viable assumption. More specifically, it enables capturing non-
linear and non-monotone conditional dependence relationships among the variables that
partial correlations would fail to detect.

Equipped with the theoretical guarantees we established for the nonPC in Section 3.1,
we establish below in Theorem 4 the consistency of the nonFCI algorithm for general
distributions in sparse high-dimensional settings. LetH = (V, E) be a DAG with the vertex
set partitioned as V = VX ∪VL ∪VT , where VX indexes the set of p observed variables, VL
denotes the set of latent variables and VT stands for the set of selection variables. LetM
be the unique MAG over VX. We let p grow with n and consider p = pn, H = Hn and
Q = Qn, where Q is the distribution of (U1, . . . , Up) := (X1 |VT , . . . , Xp |VT). We provide
below the definition of possible-D-SEP sets (Definition 3.3 in [4]).

Definition 1. Let C be a graph with any of the following edge types : ◦−◦, ◦→ and↔. A possible-
D-SEP (Xa, Xb) in C, denoted pds(C, Xa, Xb), is defined as follows: Xc ∈ pds(C, Xa, Xb) if and
only if there is a path π between Xa and Xc in C such that, for every subpath 〈Xe, X f , Xg〉 of π, X f
is a collider on the subpath in C or 〈Xe, X f , Xg〉 is a triangle in C.
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To prove the consistency of the nonFCI algorithm in sparse high-dimensional settings,
we impose the following regularity conditions, which are similar to the assumptions
imposed in Section 4 in [4].

(C3) The distribution Qn is faithful to the underlying MAGMn for all n.
(C4) The maximum size of the possible-D-SEP sets for finding the final skeleton in the

FCI-stable algorithm (Algorithm A6 in Appendix A), q′n, grows at the rate of O(n1−b),
where 0 < b ≤ 1.

(C5) For any Ui, Uj ∈ {U1, . . . , Upn} and US ⊆ {U1, . . . , Upn}\{Ui, Uj} with |US| ≤ q′n,
assume

inf
{
|ρ∗0(Ui, Uj|US)| : ρ∗0(Ui, Uj|US) 6= 0

}
≥ λ′min (λ′min)

−1 = O(nv)

and sup |ρ∗0(Ui, Uj|US)| ≤ λ′max

where λ′max is a positive constant and 0 < v < 1/4.

Theorem 4. Suppose conditions (A1)–(A3) and (C3)–(C5) hold. Denote by Cn and C∗n the true
underlying FCI-PAG and the output of the nonFCI algorithm, respectively. Then, as n → ∞,
P
(
C∗n = Cn

)
→ 1.

4. Numerical Studies
4.1. Performance of the NonPC Algorithm

In this subsection, we compare the performances of the nonPC and the PC-stable algo-
rithms in finding the skeleton and the CPDAG for various simulated datasets. We simulate
random DAGs in the following examples and sample from probability distributions faithful
to them.

Example 1 (Linear SEM). We first fix a sparsity parameter s ∈ (0, 1) and enumerate the vertices
as V = {1, . . . , p}. We then construct a p× p adjacency matrix Λ as follows. First, initialize Λ as
a zero matrix. Next, fill every entry in the lower triangle (below the diagonal) of Λ by independent
realizations of Bernoulli random variables with success probability s. Finally, replace each nonzero
entry in Λ by independent realizations of a Uniform(0.1, 1) random variable.

In this scheme, each node has the same expected degree E(m) = (p − 1)s, where
m is the degree of a node and follows a Binomial (p− 1, s) distribution. Using the adja-
cency matrix Λ, the data are then generated from the following linear structural equation
model (SEM) :

X = ΛX + ε

where ε = (ε1, . . . , εp) and ε1, . . . , εp are jointly independent. To obtain samples {Xk
1, . . . , Xk

p}n
k=1

on {X1, . . . , Xp}, we first sample {εk
1, . . . , εk

p}n
k=1 from the three following data-generating

schemes. For 1 ≤ k ≤ n and 1 ≤ i ≤ p,
1. Normal: Generate εk

i ’s independently from a standard normal distribution.
2. Copula: Generate εk

i ’s as in (1) and then transform the marginals to a F1,1 distribution.
3. Mixture: Generate εk

i ’s independently from a 50–50 mixture of a standard normal and
a standard Cauchy distribution.

Example 2 (Nonlinear SEM). In this example, we first generate a p× p adjacency matrix Λ in
the similar way as in Example 1 and then generate the data from the following nonlinear SEM

(similar to [10]) : Xi = ∑j : Λij 6=0 fij(Xj) + εi with εi
i.i.d.∼ N(0, 1), where 1 ≤ j < i ≤ p.

If the functions fij’s are chosen to be nonlinear, then the data will typically not correspond to a
well-known multivariate distribution. We consider fij(xj) = bij1xj + bij2x2

j , where bij1 and bij1 are
independently sampled from N(0, 1) and N(0, 0.5) distributions, respectively.

With the exception of Example 1.1, the above examples are all non-Gaussian graphical
models. We would thus expect the nonPC to perform better than the PC-stable in learning
the unknown causal structure in these examples. For each of the four data generating
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methods considered above, we compare the Structural Hamming Distance (SHD) [25]
between the estimated and the true skeletons of the underlying DAGs using the nonPC
and PC-stable algorithms. The SHD between two undirected graphs is the number of edge
additions or deletions necessary to make the two graphs match. Therefore, larger SHD
values between the estimated and the true skeleton correspond to worse estimates.

We consider 199 bootstrap replicates for the CdCov-based conditional independence
tests in the implementation of our nonPC algorithm and the significance level α = 0.05.
Table 1 presents the average SHD for the different data generating schemes over 20 simula-
tion runs, for different choices of n, p and E(m).

Table 1. Comparison of the average structural Hamming distances (SHD) of nonPC and PC-stable
algorithms across simulation studies.

Normal Copula

n p E(m) nonPC PC-stable nonPC PC-stable

50 9 1.4 3.35 3.05 5.55 5.75
100 27 2.0 14.55 11.00 25.6 28.6
150 81 2.4 53.70 43.45 97.3 121.3
200 243 2.8 186.2 183.4 331.00 471.45

Mixture Nonlinear SEM

n p E(m) nonPC PC-stable nonPC PC-stable

50 9 1.4 3.8 3.5 2.9 3.7
100 27 2.0 17.75 18.00 15.05 20.05
150 81 2.4 69.05 77.75 62.583 95.083
200 243 2.8 250.3 336.1 213.70 375.45

The results in Table 1 demonstrate that the nonPC performs nearly as good as the
PC-stable for the Gaussian data example, in terms of the average SHD. However, for
each of the non-Gaussian data examples, the nonPC performs better than the PC-stable in
estimating the true skeleton of the underlying DAGs. The improvement in SHD becomes
more substantial as the dimension grows. The superior performance of the nonPC over
PC-stable for the non-Gaussian graphical models is expected, as the characterization of
conditional independence by partial correlations is only valid under the assumption of
joint Gaussianity.

4.2. Performance of the NonFCI Algorithm
In this subsection, we compare the performances of the nonFCI and the FCI-stable algo-

rithms over various simulated datasets. We first generate random DAGs as in Examples 1 and 2.
To assess the impact of latent variables, we randomly define half of the variables with no
parents and at least one child as latent. We do not consider selection variables. We run
both the nonFCI and the FCI-stable algorithms on the above data examples with n = 200,
p = {10, 20, 30, 100, 200} and α = 0.01, using 199 bootstrap replicates for the CdCov-based
conditional independence tests. We consider 20 simulation runs for each of the data gen-
erating models. Table 2 reports the average SHD between the estimated and true PAG
skeleton by the nonFCI and FCI-stable algorithms.
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Table 2. Comparison of the average structural Hamming distances (SHD) of nonFCI and FCI-stable
algorithms across simulation studies.

Normal Copula Mixture Nonlinear SEM

p E(m) nonFCI FCI-Stable nonFCI FCI-Stable nonFCI FCI-Stable nonFCI FCI-Stable

10 2.0 7.15 7.60 1.3 1.8 5.65 6.80 7.15 8.20
20 2.0 14.55 17.60 4.55 6.85 13.65 18.55 19.0 20.8
30 2.0 27.65 33.95 5.25 10.15 19.3 27.8 33.40 37.85

100 3.0 109.30 150.35 26.95 60.05 62.25 111.10 115.2 149.0
200 3.0 287.75 371.40 76.733 157.267 136.05 255.10 289.6 354.1

The results in Table 2 demonstrate that, in both the Gaussian and non-Gaussian exam-
ples, the nonFCI algorithm outperforms the FCI-stable in estimating the true PAG skeleton.

4.3. Real Data Example
A major difficulty in assessing whether nonPC and nonFCI provide more reasonable

estimates compared to the parametric versions of the algorithms in high-dimensional real
data settings is that the true causal graph is not known in most of the cases. In absence of the
truth, we may only be able to draw some conclusions about sensible causal mechanisms by
examining known or logical relationships among pairs of variables. However, this becomes
increasingly difficult for larger networks, where even visualization becomes challenging.
This is why we first choose a relatively smaller dataset in Section 4.3.1, where we can draw
upon background knowledge to glean insight into potential causal mechanisms in a setting
where the data are clearly non-Gaussian. This example highlights the main focus of the
paper that, with non-Gaussian data (categorical, as in this example), nonPC is expected to
perform better than the PC-stable in learning the true causal structure of the underlying
DAG. In Section 4.3.2, we consider a larger example and examine the performance of
PC-stable and nonPC in learning the DAG from both seemingly Gaussian data as well
as a categorized version of the same data. This example clearly illustrates the potential
limitations of PC-stable: in contrast to nonPC, the output of PC-stable can be strikingly
different when applied to a categorized version of the original data.

4.3.1. Montana Poll Dataset
To demonstrate the flexibility of our proposed framework, we first apply the nonPC

algorithm to the Montana Economic Outlook Poll dataset. The poll was conducted in May
1992 where a random sample of 209 Montana residents were asked whether their personal
financial status was worse, the same or better than a year ago, and whether they thought
the state economic outlook was better than the year before. Accompanying demographic
information on the respondents’ age, income, political orientation, and area of residence
in the state were also recorded. We obtained the dataset from the Data and Story Library
(DASL), available at https://math.tntech.edu/e-stat/DASL/page4.html (accessed on 25
March 2021). The study is comprised of the following seven categorical variables: AGE
= 1 for under 35, 2 for 35–54, 3 for 55 and over; SEX = 0 for male, 1 for female; INC =
yearly income: 1 for under $20 K, 2 for $20–35 K, 3 for over $35 K; POL = 1 for Democrat,
2 for Independent, 3 for Republican; AREA = 1 for Western, 2 for Northeastern, 3 for
Southeastern Montana; FIN (=Financial status): 1 for worse, 2 for same, 3 for better than a
year ago; and STAT (=State economic outlook): 1 for better, 0 for not better than a year ago.

After removing the cases with missing values, we are left with n = 163 samples.
Since all the variables are categorical, the Gaussianity assumption is outrightly violated.
Thus, we would expect the nonPC to perform better than the PC-stable in learning the true
causal structure among the variables in this case. Figure 1 below presents the CPDAGs
estimated by the nonPC and PC-stable algorithms at a significance level α = 0.1. We
consider 199 bootstrap replicates for the CdCov-based conditional independence tests in
the implementation of the nonPC algorithm.

It is quite intuitive that age and sex are likely to affect the income; one’s financial status
and the area of residence might also influence their political inclination; and improvements

https://math.tntech.edu/e-stat/DASL/page4.html
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or downturns in the state economic outlook might impact an individual’s financial status.
The CPDAG estimated by the nonPC algorithm in Figure 1a affirms such common-sense
understanding of these causal influences. However, in the CPDAG estimated by the PC-
stable in Figure 1b, the edge between age and income is missing. In addition, the directed
edges POL→ AREA and POL→ FIN seem to make little sense in this case.

(a) nonPC (b) PC-stable

Figure 1. CPDAGs estimated by the nonPC and PC-stable algorithms for the Montana poll dataset.

4.3.2. Protein Expression Data
We next consider a protein expression dataset of 410 patients with breast cancer

from The Cancer Genome Atlas (TCGA). The dataset consists of p = 118 genes, and we
randomly select a subset of n = 100 patients with PR-negative status. Since the true causal
structure of the genes in the cancer cells may be different than that of normal cells [26],
we apply both the nonPC and PC-stable algorithms to learn the causal structure. To put
the performances of the nonPC and PC-stable under scrutiny as the data depart farther
away from Gaussianity, we categorize the protein expression data for each of the p genes,
denoted by {Xk

a}n
k=1, 1 ≤ a ≤ p, as follows. We compute the three quartiles Q1 ; a, Q2 ; a

and Q3 ; a of the protein expression values for every 1 ≤ a ≤ p. Consequently, we obtain
categorized protein expressions {Xk

C ; a}n
k=1 for 1 ≤ a ≤ p, where

Xk
C ; a :=


0 if Xk

a ≤ Q1 ; a

1 if Q1 ; a < Xk
a ≤ Q2 ; a

2 if Q2 ; a < Xk
a ≤ Q3 ; a

3 if Xk
a > Q3 ; a .

We apply the nonPC and PC-stable algorithms to both the original and the categorized
protein expression data at a significance level α = 0.01. We consider 199 bootstrap replicates
for the CdCov-based conditional independence tests in the implementation of the nonPC
algorithm. Table 3 below shows the SHD between the skeletons estimated from the original
and the categorized data by the nonPC and PC-stable algorithms. It can be seen that the
SHD between the skeletons estimated from the original and categorized data by the PC-
stable algorithm is much larger than that for nonPC. This example highlights the potential
limitation of parametric implementations of the PC algorithm: when the data deviate
farther away from Gaussianity (in this case, being categorical), the estimates produced by
the PC-stable may deviate considerably more from the estimates from the original data.
In contrast, the nonparametric test in nonPC delivers more stable estimates regardless of
the data distribution.

Table 3. Comparison of the SHD between the skeletons estimated from the original and the catego-
rized protein expression data by the nonPC and PC-stable algorithms.

nonPC PC-Stable

22 79
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5. Discussion
We proposed nonparametric variants of the widely popular PC-stable and FCI-stable

algorithms, which employ conditional distance covariance (CdCov) to test for conditional
independence relationships in their sample versions. Our proposed algorithms broaden the
applicability of the PC/PC-stable and FCI/FCI-stable algorithms to general distributions
over DAGs, and enable taking into account nonlinear and non-monotone conditional
dependence among the random variables, which partial correlations fail to capture. We
show that the high-dimensional consistency of the PC-stable and FCI-stable algorithms
carry over to more general distributions over DAGs when we implement CdCov-based
nonparametric tests for conditional independence. These results are obtained without
imposing any strict distributional assumptions and only require moment and tail conditions
on the variables.

There are several intriguing potential directions for future research. First, it is generally
difficult to select the tuning parameter (i.e., the significance threshold for the CdCov
test) in causal structure learning. One possible strategy is to use ideas based on stability
selection [27,28]. By assessing the stability of the estimated graphs in multiple subsamples,
this strategy allows us to choose the tuning parameter in order to control the false positive
error. However, the repeated subsampling increases the computational burden. Second,
the computational and sample complexities of the PC and FCI algorithms (and hence those
of the nonPC and nonFCI) scale with the maximum degree of the DAG, which is assumed
to be small relative to the sample size. However, in many applications, one encounters
sparse graphs containing a small number of highly connected ‘hub’ nodes. In such cases,
ref. [29] proposed a low-complexity variant of the PC algorithm, namely the reduced PC
(rPC) algorithm that exploits the local separation property of large random networks [30].
The rPC is shown to consistently estimate the skeleton of a high-dimensional DAG by
conditioning only on sets of small cardinality. More recently, ref. [31] have generalized
this approach to account for unobserved confounders. In this light, it would be intriguing
to develop computationally faster variants of the nonPC and nonFCI in the future by
exploiting the idea of local separation.
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Appendix A. Preliminaries and Background
For the sake of completeness, we illustrate in this section the pseudocodes of the oracle

versions of the PC-stable and FCI-stable algorithms. We also outline a local bootstrap
procedure that can be used to approximate the threshold ξα mentioned in Section 3.1 and is
used throughout the numerical studies in the paper.

Algorithm A1 presents the pseudocode of the oracle version of Step 1 of the PC-stable
algorithm (Algorithm 4.1 of [7]), which estimates the skeleton of the underlying DAG.
Algorithm A2 presents the pseudocode of Step 2 of the PC-stable algorithm (Algorithm 2
of [8]) that extends the skeleton estimated in Step 1 to the CPDAG. Algorithm A3 presents
the pseudocode of the FCI-stable algorithm (Section 4.4 in [7]). It implements Algorithm A4
to obtain an initial skeleton of the underlying PAG, Algorithm A5 to orient the v-structures,
and finally Algorithm A6 to obtain the final skeleton that the FCI-stable returns.

To approximate the threshold ξα to test for H0 : X ⊥⊥ Y|Z vs. HA : X 6⊥⊥ Y|Z at
level α ∈ (0, 1) (see Section 3.1), we consider the following local bootstrap procedure in
the light of Section 4.3 in [15]. Given the i.i.d. sample {Wi = (Xi, Yi, Zi)}n

i=1 from the joint

https://math.tntech.edu/e-stat/DASL/page4.html
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distribution of W = (X, Y, Z), draw a local bootstrap sample {W†
i = (X†

i , Yi, Zi)}n
i=1 and

compute the bootstrap statistic. The detailed steps are as follows :

Algorithm A1 Step 1 of the PC-stable algorithm (oracle version).

Require : Conditional independence information among all variables in V, and an
ordering order(V) on the variables.
Form the complete undirected graph C on the vertex set V.
Let l = −1;
repeat

l = l + 1;
for all vertices Xa in C do

let u(Xa) = adj(C, Xa)
end for
repeat

Select a (new) ordered pair of vertices (Xa, Xb) that are adjacent in C such that
|u(Xa) \ {Xb}| ≥ l, using order (V);
repeat

Choose a (new) set S ⊆ u(Xa) \ {Xb} with |S| = l, using order(V);
if Xa ⊥⊥ Xb | S then

Delete the edge Xa − Xb from C;
Let sepset (Xa, Xb) = sepset (Xb, Xa) = S;

end if
until Xa and Xb are no longer adjacent in C or all S ⊆ u(Xa) \ {Xb} with |S| = l

have
been considered

until all ordered pairs of adjacent vertices (Xa, Xb) in C with |u(Xa) \ {Xb}| ≥ l have
been

considered
until all pairs of adjacent vertices (Xa, Xb) in C satisfy |u(Xa) \ {Xb}| ≤ l
Output : The estimated skeleton C, separation sets sepset.

Algorithm A2 Step 2 of the PC-stable algorithm.

Require : Skeleton C, separation sets sepset.
for all all pair of nonadjacent vertices Xa, Xc with common neighbor Xb in C do

if Xb /∈ sepset(Xa, Xc) then
Replace Xa − Xb − Xc in C by Xa → Xb ← Xc;

end if
end for
In the resulting PDAG, try to orient as many undirected edges as possible by repeated
applications of the following rules :
(R1) Orient Xb − Xc into Xb → Xc whenever there is an arrow Xa → Xb such that Xa
and Xc are nonadjacent (otherwise, a new v-structure is created).
(R2) Orient Xa − Xc into Xa → Xc whenever there is a chain Xa → Xb → Xc (otherwise,
a directed cycle is created).
(R3) Orient Xa − Xc into Xa → Xc whenever there are two chains Xa − Xb → Xc and
Xa − Xd → Xc such that Xb and Xd are nonadjacent (otherwise, a new v-structure or a
directed cycle is created).
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Algorithm A3 The FCI-stable algorithm (oracle version).

Require : Conditional independence information among all variables in VX given VT .
Use Algorithm A4 to find an initial skeleton (C), separation sets (sepset) and unshielded
triple list (M);
Use Algorithm A5 to orient v-structures (update C);
Use Algorithm A6 to find the final skeleton (update C and sepset);
Use Algorithm A5 to orient v-structures (update C);
Use rules (R1)-(R10) of [6] to orient as many edge marks as possible (update C);
Output : C, sepset.

Algorithm A4 Obtaining an initial skeleton in the FCI-stable algorithm (Algorithm 4.1 in
the supplement of [4]).

Require : Conditional independence information among all variables in VX given VT ,
and an ordering order(VX) on the variables.
Form the complete undirected graph C on the vertex set VX with edges ◦−◦.
Let l = −1;
repeat

l = l + 1;
for all vertices Xa in C do

let u(Xa) = adj(C, Xa)
end for
repeat

Select a (new) ordered pair of vertices (Xa, Xb) that are adjacent in C such that
|u(Xa) \ {Xb}| ≥ l, using order (VX);
repeat

Choose a (new) set Y ⊆ u(Xa) \ {Xb} with |Y| = l, using order(VX);
if Xa ⊥⊥ Xb |Y ∪VT then

Delete the edge Xa ◦−◦ Xb from C;
Let sepset(Xa, Xb) = sepset(Xb, Xa) = Y;

end if
until Xa and Xb are no longer adjacent in C or all Y ⊆ u(Xa) \ {Xb} with |Y| = l

have
been considered

until all ordered pairs of adjacent vertices (Xa, Xb) in C with |u(Xa) \ {Xb}| ≥ l have
been

considered
until all pairs of adjacent vertices (Xa, Xb) in C satisfy |u(Xa) \ {Xb}| ≤ l
Form a listM of all unshielded triples 〈Xc · Xd〉 (i.e., the middle vertex is left unspecified)
in C with c < d.
Output : C, sepset,M.

Algorithm A5 Orienting v-structures in the FCI-stable algorithm (Algorithm 4.2 in the
supplement of [4]).

Require : Initial skeleton (C), separation sets (sepset) and unshielded triple list (M).
for all elements 〈Xa, Xb, Xc〉 ofM do

if Xb /∈ sepset(Xa, Xc) then Orient Xa ?−◦ Xb ◦−? Xc as Xa?→ Xb ←?Xc
end if

end for
Output : C, sepset.



Entropy 2022, 24, 351 17 of 23

Algorithm A6 Obtaining the final skeleton in the FCI-stable algorithm (Algorithm 4.3 in
the supplement of [4]).

Require: Partially oriented graph (C) and separation sets (sepset).
for all vertices Xa in C do

let v(Xa) = pds(C, Xa, ·);
for all vertices Xb ∈ adj(C, Xa) do

Let l = −1;
repeat

l = l + 1;
repeat

Choose a (new) set Y ⊆ v(Xa) \ {Xb} with |Y| = l;
if Xa ⊥⊥ Xb |Y ∪VT then

Delete the edge Xa ?−? Xb from C;
Let sepset(Xa, Xb) = sepset(Xb, Xa) = Y;

end if
until Xa and Xb are no longer adjacent in C or all Y ⊆ v(Xa) \ {Xb} with

|Y| = l have
been considered

until Xa and Xb are no longer adjacent in C or |v(Xa) \ {Xb}| < l
end for

end for
Reorient all edges in C as ◦−◦.
Form a listM of all unshielded triples 〈Xc · Xd〉 in C with c < d.
Output : C, sepset,M.

A. For i = 1, . . . , n, draw X†
i from

F̂X|Z=Zi
=

∑n
j=1 Kij 1(−∞, Xj](x)

∑n
j=1 Kij

.

Compute ρ̂ ∗† based on the local bootstrap sample {W†
i = (X†

i , Yi, Zi)}n
i=1.

B. Repeat Step A B times to obtain {ρ̂ ∗†b }
B
b=1. Obtain ξ ∗n,α as the 100(1− α)th percentile

of {nhr/2 ρ̂ ∗†b }
B
b=1. Then, 1

nhr/2 ξ ∗n,α can be considered as an approximation for ξα.

Appendix B. Proofs of the Theoretical Results
In this section, we provide detailed technical proofs of the theoretical results presented

in the paper. We first state a concentration inequality in Lemma A1. The result in Lemma A1
is not new and can be seen as a corollary of Theorem A in Section 5.6.1 of [32]; however,
it is a key technical ingredient in the proof of Theorem 1, which is the main theoretical
innovation of our paper. For completeness, we include a short proof for Lemma A1.

Lemma A1. Consider a U-statistic Un = U(X1, . . . , Xn) = (n
m)
−1 ∑

i1<···<im

h(Xi1 , . . . , Xim) with

a symmetric kernel h such that EUn = E h(X1, . . . , Xm) = θ. Further suppose |h(X1, . . . , Xm)| ≤
M for some M > 0. Then, for any ε > 0, we have

P(|Un − θ| > ε) ≤ 2 exp
(
− ε2 k

2M2

)
where k := b n

m c.

Proof of Lemma A1. Define

W(X1, . . . , Xn) :=
1
k
[
h(X1, . . . , Xm) + h(Xm+1, . . . , X2m) + · · · + h(Xkm−m+1, . . . , Xkm)

]
.
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Then, following Section 5.1.6 in [32], we can write

Un =
1
n! ∑

π

W(Xi1 , . . . , Xin) (A1)

where ∑
π

denotes summation over all n! permutations (i1, . . . , in) of (1, 2, . . . , n). Thus, Un

can be expressed as an average of n! terms, each of which is an average of k i.i.d. random
variables. Using Markov’s inequality, convexity of the exponential function and Jensen’s
inequality, we have, for any t > 0,

P(Un − θ > ε) = P
(

exp
(
t (Un − θ)

)
> exp(tε)

)
≤ exp(−tε) exp(−tθ)E

[
exp

(
t Un

)]
= exp(−tε) exp(−tθ)E

[
exp

(
t

1
n! ∑

p
W(Xi1 , . . . , Xin)

)]

≤ exp(−tε) exp(−tθ)
1
n! ∑

π

E
[
exp

(
t W(Xi1 , . . . , Xin)

)]
= exp(−tε) exp(−tθ)

[
E
(

exp
(

t
k

h
))]k

= exp(−tε)Ek
[

exp
( t

k
(h− θ)

)]

(A2)

where, for notational simplicity, we use h to denote h(X1, . . . , Xm). Using Hoeffding’s
Lemma, we have from (A2)

P(Un − θ > ε) ≤ exp
(
−tε + k

1
8

t2

k2 (2M)2
)

= exp
(
−tε +

t2M2

2k

)
.

Symmetrically, we obtain

P(|Un − θ| > ε) ≤ 2 exp
(
−tε +

t2M2

2k

)
. (A3)

The right-hand side of (A3) is minimized at t = ε k/M2. Therefore, choosing t = ε k/M2,
we obtain

P(|Un − θ| > ε) ≤ 2 exp
(
− ε2 k

2M2

)
.

�

Proof of Theorem 1. When |S| = 0, it can be shown in similar lines of Theorem 1 in
Li et al. (2012) [33] that, for any ε > 0, there exist positive constants A, B and γ ∈ (0, 1/4)
such that

P(| ρ̂ ∗(Xa, Xb|XS)− ρ∗0 (Xa, Xb|XS) | > ε) ≤ O
(

2 exp
(
−A n1−2γ ε2

)
+ n exp

(
− B nγ

))
.

Now, consider the case 0 < |S| ≤ mp.

For notational convenience, we treat Xa, Xb and XS as X, Y and Z, respectively.

Denote δZ := CdCov2(X, Y|Z). Then, ρ∗0 = E[δZ]. Recall that
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ρ̂ ∗(X, Y|Z) :=
1
n

n

∑
u=1

CdCov2
n(X, Y|Zu) :=

1
n

n

∑
u=1

∆i,j,k,l;u

where ∆i,j,k,l;u := ∑
i,j,k,l

Kiu Kju Kku Klu

12
(

∑n
i=1 Kiu

)4 dS
ijkl .

(A4)

From (A4), we have

E
[
CdCov2

n(X, Y|Zu)|Z
]

=
1

12
E
[

dS
1234 | Z1 = Zu, . . . , Z4 = Zu

]
∑

i,j,k,l
Kiu Kju Kku Klu /

(
n

∑
i=1

Kiu

)4

=
1

12
E
[

dS
1234 | Z1 = Zu, . . . , Z4 = Zu

]
= δZu

(A5)

where the last equality follows from Lemma 1 in [15]. Together, (A4) and (A5)

imply E [ ρ̂ ∗] = ρ∗0 .

Now, consider the truncation

ρ∗0 = ρ∗01 + ρ∗02

:= E
[

1
12

dS
i,j,k,l 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ ≤ M
)]

+ E
[

1
12

dS
i,j,k,l 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)] (A6)

where M > 0 will be specified later. Then, using triangle inequality,

P(|ρ̂ ∗ − ρ∗0 | > ε) = P
(∣∣∣∣∣ 1n n

∑
u=1

(
∑

i,j,k,l
∆i,j,k,l;u − ρ∗0

)∣∣∣∣∣ > ε

)

≤ P
(∣∣∣∣∣ 1n n

∑
u=1

(
∑

i,j,k,l
∆i,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ ≤ M
)
− ρ∗01

)∣∣∣∣∣ > ε/2

)

+ P
(∣∣∣∣∣ 1n n

∑
u=1

(
∑

i,j,k,l
∆i,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)
− ρ∗02

)∣∣∣∣∣ > ε/2

)
=: I + II .

(A7)

Clearly, from (A4), we have |∆i,j,k,l;u| ≤ M when
∣∣∣ 1

12 dS
i,j,k,l

∣∣∣ ≤ M. With this observation,
we have

I ≤ 2 exp
(
− n ε2

8 M2

)
(A8)

which follows from Lemma A1 by setting m = 1, k = bnc and ε = ε/2. Choosing M = c nγ

for γ ∈ (0, 1/4) and some positive constant c, it follows from (A8) that

I ≤ 2 exp
(
−C1 n1−2γ ε2

)
(A9)

for some C1 > 0.
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Now, to find a suitable upper bound for II, note that a simple application of triangle
inequality yields

ε

2
<

∣∣∣∣∣ 1
n

n

∑
u=1

∑
i,j,k,l

∆i,j,k,l;u 1
(∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
)
− ρ∗02

∣∣∣∣∣
≤
∣∣∣∣∣ 1

n

n

∑
u=1

∑
i,j,k,l

∆i,j,k,l;u 1
(∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
) ∣∣∣∣∣ + |ρ∗02| .

(A10)

For the choice of M = c nγ, we have

ρ∗02 = E
[

1
12

dS
i,j,k,l 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)]

<
ε

4
(A11)

for sufficiently large n (see, for example, Exercise 6 in Chapter 5, [34]). Combining (A10)
and (A11), we obtain{∣∣∣∣∣ 1

n

n

∑
u=1

∑
i,j,k,l

∆i,j,k,l;u 1
(∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
)
− ρ∗02

∣∣∣∣∣ > ε/2

}

⊆
{∣∣∣∣∣ 1

n

n

∑
u=1

∑
i,j,k,l

∆i,j,k,l;u 1
(∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
) ∣∣∣∣∣ > ε/4

}

⊆
{[ ∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
]

for some 1 ≤ i, j, k, l ≤ n
}

,

which implies

P
(∣∣∣∣∣ 1

n

n

∑
u=1

∑
i,j,k,l

∆i,j,k,l;u 1
(∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
)
− ρ∗02

∣∣∣∣∣ > ε/2

)

≤ P
(∣∣∣∣∣ 1

n

n

∑
u=1

∑
i,j,k,l

∆i,j,k,l;u 1
(∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
) ∣∣∣∣∣ > ε/4

)

≤ n4 P
(∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
)

.

(A12)

This is because, if
∣∣∣ 1

12 dS
i,j,k,l

∣∣∣ ≤ M for all 1 ≤ i, j, k, l ≤ n, then

n−1
n

∑
u=1

∑
i,j,k,l

∆i,j,k,l;u 1
(∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
)
= 0.

Under Condition (A1), Lemma 2 in the supplementary materials of [35] proves that
there exists s > 0 for which E

[
exp

(
s
∣∣ dS

1234

∣∣)] is finite. Using Markov’s inequality, we have

P
(∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
)
≤ P

(
exp

(
s
∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣) > exp(sM)

)
≤ exp(−sM)E

[
exp

(
s
∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣)]
≤ C2 exp(−sM) ≤ C2 exp(−s1 nγ)

(A13)

for some positive constants C2 and s1, where the last line uses the fact that M = c nγ.
Combining (A12) and (A13), we have

II ≤ C2 n4 exp(−s1 nγ) . (A14)



Entropy 2022, 24, 351 21 of 23

Finally, combining (A7), (A9) and (A14), we obtain

P(|ρ̂ ∗ − ρ∗0 | > ε/2) ≤ 2 exp
(
−C1n1−2γε2

)
+ C2 n4 exp(−s1nγ)

for some positive constants γ, C1, C2 and s1. This completes the proof of the theorem.
�

Proof of Theorem 2. The first inequality in Theorem 2 simply follows by observing the
fact that, for any generic random sequence {Xn}∞

n=1 and any ε > 0,

P(|Xn| > ε) ≤ P
(

sup
n
|Xn| > ε

)
for all n ≥ 1, which, in turn, implies

sup
n

P(|Xn| > ε) ≤ P
(

sup
n
|Xn| > ε

)
.

The second inequality follows from union bound and Theorem 1. �

Proof of Theorem 3. Denote by Eab|S the event that “an error occurs while testing for

Xa ⊥⊥ Xb |XS" for a, b ∈ V and S ∈ J
mpn
a,b . Then,

P( an error occurs in the nonPC algorithm ) ≤ P
( ⋃

a,b∈V
S∈J

mpn
a,b

Eab|S

)
. p

mpn+2
n P(Eab|S) (A15)

which is essentially due to the union bound. Now, we can write Eab|S = E I
ab|S ∪ E II

ab|S, where

(Type I error) E I
ab|S : |ρ̂∗ab|S| > ξα when ρ∗0 ; ab|S = 0

and (Type II error) E II
ab|S : |ρ̂∗ab|S| ≤ ξα when ρ∗0 ; ab|S > 0 .

Then, by using triangle inequality,

P(E I
ab|S) = P(| ρ̂∗ab|S | > ξα) = P

(
| ρ̂∗ab|S − ρ∗0 ; ab|S + ρ∗0 ; ab|S | > ξα

)
≤ P

(
| ρ̂∗ab|S − ρ∗0 ; ab|S | > ξα − Cmax

)
. 2 exp

(
− A n1−2γ(ξα − Cmax)

2) + n4 exp
(
− Bnγ

) (A16)

for positive constants A, B and γ ∈ (0, 1/4), where the last inequality follows from
Theorem 2. Similarly, using the definition of Cmin and the identity |a| − |b| ≤ |a − b|
for a, b ∈ R, we have

P
(

E II
ab|S

)
= P(| ρ̂∗ab|S | ≤ ξα) = P(−| ρ̂∗ab|S | ≥ −ξα)

= P(|ρ∗0 ; ab|S| − | ρ̂
∗
ab|S| ≥ |ρ

∗
0 ; ab|S| − ξα)

≤ P(|ρ∗0 ; ab|S − ρ̂∗ab|S| ≥ Cmin − ξα)

. 2 exp
(
− A n1−2γ(ξα − Cmin)

2) + n4 exp
(
− Bnγ

)
.

(A17)
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Again, the last inequality follows from Theorem 2. Combining Equations (A15)–(A17),
we have

P ( an error occurs in the nonPC algorithm )

= O
(

p
mpn+2
n

[
2 exp

(
− A n1−2γ(ξα − Cmax)

2) + 2 exp
(
− A n1−2γ(ξα − Cmin)

2]
+ n4 exp

(
− B nγ

)])
= o(1)

where the last step follows from the fact that γ ∈ (0, 1/4) and Assumption (A5). This
implies that, as n→ ∞,

P
(
Ĝskel,n = Gskel,n

)
= 1 − P ( an error occurs in the nonPC algorithm )

→ 1 .

�

Proof of Theorem 4. The proof follows similar lines of the proof of Theorem 4.2 in
[4], replacing Lemma 1.4 in their supplement by Theorem 2 in our paper.

�
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