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ABSTRACT
Many statistical applications require the quantification of joint dependence among more than two random
vectors. In this work, we generalize the notion of distance covariance to quantify joint dependence among
d ≥ 2 random vectors. We introduce the high-order distance covariance to measure the so-called Lancaster
interaction dependence. The joint distance covariance is then defined as a linear combination of pairwise
distance covariances and their higher-order counterparts which together completely characterize mutual
independence. We further introduce some related concepts including the distance cumulant, distance
characteristic function, and rank-based distance covariance. Empirical estimators are constructed based
on certain Euclidean distances between sample elements. We study the large-sample properties of the
estimators and propose a bootstrap procedure to approximate their sampling distributions. The asymptotic
validity of the bootstrap procedure is justified under both the null and alternative hypotheses. The new
metrics are employed to perform model selection in causal inference, which is based on the joint indepen-
dence testing of the residuals from the fitted structural equation models. The effectiveness of the method is
illustrated via both simulated and real datasets. Supplementary materials for this article are available online.
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1. Introduction

Measuring and testing dependence is of central importance in
statistics, which has found applications in a wide variety of
areas including independent component analysis, gene selec-
tion, graphical modeling, and causal inference. Statistical tests
of independence can be associated with widely many depen-
dence measures. Two of the most classical measures of asso-
ciation between two ordinal random variables are Spearman’s
rho and Kendall’s tau. However, tests for (pairwise) indepen-
dence using these two classical measures of association are not
consistent, and only have power for alternatives with mono-
tonic association. Contingency table-based methods, and in
particular the power-divergence family of test statistics (Read
and Cressie 1988), are the best known general purpose tests
of independence, but are limited to relatively low dimensions,
since they require a partitioning of the space in which each
random variable resides. Another classical measure of depen-
dence between two random vectors is the mutual information
(Cover and Thomas 1991), which can be interpreted as the
Kullback–Leibler divergence between the joint density and the
product of the marginal densities. The idea originally dates back
to the 1950s, in groundbreaking works by Shannon and Weaver
(1949), Mcgill (1954), and Fano (1961). Mutual information
completely characterizes independence and generalizes to more
than two random vectors. However, test based on mutual infor-
mation involves distributional assumptions for the random vec-
tors and hence is not robust to model misspecification.
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In the past 15 years, kernel-based methods have received
considerable attention in both the statistics and machine
learning literature. For instance, Bach and Jordan (2002) derived
a regularized correlation operator from the covariance and
cross-covariance operators and used its largest singular value
to conduct independence test. Gretton et al. (2005, 2007)
introduced a kernel-based independence measure, namely, the
Hilbert-Schmidt Independence Criterion (HSIC), to test for
independence of two random vectors. This idea was recently
extended by Sejdinovic, Gretton, and Bergsma (2013) and
Pfister et al. (2018) to quantify the joint independence among
more than two random vectors.

Along with a different direction, Székely, Rizzo, and Bakirov
(2007), in their seminal article, introduced the notion of dis-
tance covariance (dCov) and distance correlation as a measure
of dependence between two random vectors of arbitrary dimen-
sions. Given the theoretical appeal of the population quantity
and the striking simplicity of the sample version, the idea has
been widely extended and analyzed in various ways in Székely
and Rizzo (2012, 2014), Lyons (2013), Sejdinovic, Gretton, and
Bergsma (2013), Dueck et al. (2014), Bergsma and Dassios
(2014), Wang et al. (2015), and Huo and Székely (2016), to
mention only a few. The dCov between two random vectors
X ∈ Rp and Y ∈ Rq with finite first moments is defined as
the positive square root of

dCov2(X, Y) = 1
cpcq

∫
Rp+q

|fX,Y(t, s) − fX(t)fY(s)|2
|t|1+p

p |s|1+q
q

dtds,
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where fX , fY , and fX,Y are the individual and joint characteristic
functions of X and Y , respectively, | · |p is the Euclidean norm of
Rp, cp = π(1+p)/2/�((1+p)/2) is a constant with �(·) being the
complete gamma function. An important feature of dCov is that
it fully characterizes independence because dCov(X, Y) = 0 if
and only if X and Y are independent.

Many statistical applications require the quantification of
joint dependence among d ≥ 2 random variables (or vec-
tors). Examples include model diagnostic checking for directed
acyclic graph (DAG) where inferring pairwise independence is
not enough in this case (see more details in Section 6), and
independent component analysis which is a means for finding
a suitable representation of multivariate data such that the com-
ponents of the transformed data are mutually independent. In
this article, we shall introduce new metrics which generalize the
notion of dCov to quantify joint dependence of d ≥ 2 random
vectors. We first introduce the notion of high-order dCov to
measure the so-called Lancaster interaction dependence (Lan-
caster 1969). We generalize the notion of Brownian covariance
(Székely and Rizzo 2009) and show that it coincides with the
high-order distance covariance. We then define the joint dCov
(Jdcov) as a linear combination of pairwise dCov and their
high-order counterparts. The proposed metric provides a nat-
ural decomposition of joint dependence into the sum of lower-
order and high-order effects, where the relative importance of
the lower-order effect terms and the high-order effect terms is
determined by a user-chosen number. In the population case,
Jdcov is equal to zero if and only if the d random vectors are
mutually independent, and thus completely characterizes joint
independence. It is also worth mentioning that the proposed
metrics are invariant to permutation of the variables and they
inherit some nice properties of dCov, see Section 2.2.

Following the idea of Streitberg (1990), we introduce the con-
cept of distance cumulant and distance characteristic function,
which leads us to an equivalent characterization of indepen-
dence of the d random vectors. Furthermore, we establish a scale
invariant version of Jdcov and discuss the concept of rank-based
distance measures, which can be viewed as the counterparts of
Spearman’s rho to dCov and JdCov.

JdCov and its scale-invariant versions can be conveniently
estimated in finite sample using V-statistics or their bias-
corrected versions. We study the asymptotic properties of the
estimators, and introduce a bootstrap procedure to approximate
their sampling distributions. The asymptotic validity of the
bootstrap procedure is justified under both the null and
alternative hypotheses. The new metrics are employed to
perform model selection in a causal inference problem, which is
based on the joint independence testing of the residuals from the
fitted structural equation models. We compare our tests with the
bootstrap version of the d-variate HSIC (dHSIC) test recently
introduced in Pfister et al. (2018) and the mutual independence
test proposed by Matteson and Tsay (2017). Finally, we remark
that although we focus on Euclidean space-valued random
variables, our results can be readily extended to general metric
spaces in view of the results in Lyons (2013).

The rest of the article is organized as follows. Section 2.1
introduces the high-order distance covariance and studies its
basic properties. Section 2.2 describes the JdCov to quantity
joint dependence. Sections 2.3–2.4 further introduce some

related concepts including the distance cumulant, distance
characteristic function, and rank-based distance covariance.
We study the estimation of the distance metrics in Section 3
and present a joint independence test based on the proposed
metrics in Section 4. Section 5 is devoted to numerical studies.
The new metrics are employed to perform model selection in
causal inference in Section 6. Section 7 discusses the efficient
computation of distance metrics and future research directions.
The technical details are gathered in the supplementary
material.

Notations. Consider d ≥ 2 random vectors X = {X1, . . . ,
Xd}, where Xi ∈ Rpi . Set p0 = ∑d

i=1 pi. Let {X′
1, . . . , X′

d} be an
independent copy ofX . Denote by ı = √−1 the imaginary unit.
Let | · |p be the Euclidean norm of Rp with the subscript omitted
later without ambiguity. For a, b ∈ Rp, let 〈a, b〉 = a�b. For a
complex number a, denote by ā its conjugate. Let fi be the char-
acteristic function of Xi, that is, fi(t) = E[eı〈t,Xi〉] with t ∈ Rpi .
Define wp(t) = (cp|t|1+p

p )−1 with cp = π(1+p)/2/�((1 + p)/2).
Write dw = (cp1 cp2 . . . cpd |t1|1+p1

p1 . . . |td|1+pd
pd )−1dt1 . . . dtd. Let

Id
k be the collection of k-tuples of indices from {1, 2, . . . , d} such

that each index occurs exactly once. Denote by 	a
 the integer
part of a ∈ R. Write X ⊥⊥ Y if X is independent of Y .

2. Measuring Joint Dependence

2.1. High-Order Distance Covariance

We briefly review the concept of Lancaster interactions first
introduced by Lancaster (1969). The Lancaster interaction mea-
sure associated with a multidimensional probability distribution
of d random variables {X1, . . . , Xd} with the joint distribution
F = F1,2,...,d, is a signed measure �F given by

�F = (F∗
1 − F1)(F∗

2 − F2) . . . (F∗
d − Fd) , (1)

where after expansion, a product of the form F∗
i F∗

j . . . F∗
k

denotes the corresponding joint distribution function Fi,j,...,k of
{Xi, Xj, . . . , Xk}. For example, for d = 4, the term F∗

1 F∗
2 F3F4

stands for F12F3F4, F∗
1 F2F3F4 stands for F1F2F3F4, etc. In

particular for d = 3, (1) simplifies to

�F = F123 − F1F23 − F2F13 − F3F12 + 2F1F2F3 . (2)

In light of the Lancaster interaction measure, we introduce the
concept of dth-order dCov as follows.

Definition 1. The dth-order dCov is defined as the positive
square root of

dCov2(X1, . . . , Xd) =
∫
Rp0

∣∣∣∣∣E
[ d∏

i=1
(fi(ti) − eı〈ti,Xi〉)

]∣∣∣∣∣
2

dw.

(3)

When d = 2, it reduces to the dCov in Székely, Rizzo, and
Bakirov (2007).

The term E[∏d
i=1(fi(ti) − eı〈ti,Xi〉)] in the definition of dCov

is a counterpart of the Lancaster interaction measure in (1) with
the joint distribution functions replaced by the joint charac-
teristic functions. When d = 3, dCov2(X1, X2, X3) > 0 rules
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out the possibility of any factorization of the joint distribution.
To see this, we note that X1 ⊥⊥ (X2, X3), X2 ⊥⊥ (X1, X3), or
X3 ⊥⊥ (X1, X2) all lead to dCov2(X1, X2, X3) = 0. On the other
hand, dCov2(X1, X2, X3) = 0 implies that

f123(t1, t2, t3) − f1(t1)f2(t2)f3(t3)

= f1(t1)f23(t2, t3) + f2(t2)f13(t1, t3) + f3(t3)f12(t1, t2)

− 3f1(t1)f2(t2)f3(t3)

for ti ∈ Rpi almost everywhere. In this case, the “higher-order
effect” that is, f123(t1, t2, t3) − f1(t1)f2(t2)f3(t3) can be repre-
sented by the “lower-order/pairwise effects” fij(ti, tj)− fi(ti)fj(tj)
for 1 ≤ i �= j ≤ 3. However, this does not necessarily imply
that X1, X2, and X3 are jointly independent. In other words when
d = 3 (or more generally when d ≥ 3), joint independence of
X1, X2, and X3 is not a necessary condition for dCov to be zero.
To address this issue, we shall introduce a new distance metric
to quantify any forms of dependence among X in Section 2.2.

In the following, we present some basic properties of high-
order dCov. Define the bivariate function Ui(x, x′) = E|x−X′

i|+
E|Xi − x′| − |x − x′| − E|Xi − X′

i| for x, x′ ∈ Rpi with 1 ≤ i ≤
d. Our definition of dCov is partly motivated by the following
lemma.

Lemma 1. For 1 ≤ i ≤ d,

Ui(x, x′) =
∫
Rpi

{
(fi(t) − eı〈t,x〉)(fi(−t) − e−ı〈t,x′〉)

}
wpi(t)dt.

By Lemma 1 and Fubini’s theorem, the dth-order (squared)
dCov admits the following equivalent representation,

dCov2(X1, . . . , Xd) =
∫
Rp0

∣∣∣∣∣E
[ d∏

i=1
(fi(ti) − eı〈ti,Xi〉)

]∣∣∣∣∣
2

dw

=
∫
Rp0

E

[ d∏
i=1

(fi(ti) − eı〈ti,Xi〉)
]

× E

[ d∏
i=1

(fi(ti) − eı〈ti,X′
i〉)

]
dw

=E

[ d∏
i=1

Ui(Xi, X′
i)

]
.

(4)

This suggests that similar to dCov, its high-order counterpart
has an expression based on the moments of Ui’s, which results in
very simple and applicable empirical formulas, see more details
in Section 3.

From the definition of dCov in Székely, Rizzo, and Bakirov
(2007), it might appear that its most natural generalization to
the case of d = 3 would be to define a measure in the following
way:

1
cpcqcr

∫
Rp+q+r

|fX,Y ,Z(t, s, u) − fX(t)fY(s)fZ(u)|2
|t|1+p

p |s|1+q
q |u|1+r

r
dtdsdu ,

where X ∈ Rp, Y ∈ Rq, and Z ∈ Rr . Assuming that the
integral above exists, one can easily verify that such a measure
completely characterizes joint independence among X, Y , and
Z. However, it does not admit a nice equivalent representa-
tion as in (4) (unless one considers a different weighting func-
tion). We exploit this equivalent representation of the dth-order
dCov to propose a V-statistic-type estimator of the population
quantity (see Section 3) which is much simpler to compute
rather than evaluating an integral as in the original definition
in (3).

Székely and Rizzo (2009) introduced the notion of covariance
with respect to a stochastic process. Theorem 8 in Székely and
Rizzo (2009) shows that the population distance covariance
coincides with the covariance with respect to Brownian motion
(or the so-called Brownian covariance). Remark 1.1 in the sup-
plementary materials generalizes the notion of Brownian covari-
ance for d ≥ 2 random vectors and establishes a connection with
the high-order distance covariances.

The following proposition shows that the high-order dis-
tance covariances are invariant to translation, orthogonal trans-
formation, and permutation on Xi’s.

Proposition 1. For any ai ∈ Rpi , ci ∈ R, and orthogonal
transformations Ai ∈ Rpi×pi , dCov2(a1 + c1A1X1, . . . , ad +
cdAdXd) = ∏d

i=1 |ci| dCov2(X1, . . . , Xd). Moreover, dCov is
invariant to any permutation of {X1, X2, . . . , Xd}.

Theorem 7 in Székely, Rizzo, and Bakirov (2007) shows the
relationship between distance correlation and the correlation
coefficient for bivariate normal distributions. We extend that
result in case of multivariate normal random variables with zero
mean, unit variance, and pairwise correlation ρ. Proposition 2
establishes a relationship between the correlation coefficient
and higher-order distance covariances for multivariate normal
random variables.

Proposition 2. Suppose (X1, X2, . . . , Xd) ∼ N(0, �), where � =
(σi,j)

d
i,j=1 with σii = 1 for 1 ≤ i ≤ d and σij = ρ for 1 ≤ i �= j ≤

d. When d = 2k − 1 or d = 2k, dCov2(X1, . . . , Xd) = O(|ρ|2k)
for k ≥ 2.

Proposition 1.1 in the supplementary materials shows some
additional properties of the dth-order dCov. Property (1) in
Proposition 1.1 gives an upper bound for dCov2(X1, X2, . . . , Xd),
which is motivated by Lemma 2.1 of Lyons (2013), whereas
an alternative upper bound is given in Property (2) which
follows directly from the Hölder’s inequality. Property (3)
allows us to represent dCov of random vectors of any dimen-
sions as an integral of dCov of univariate random variables,
which are the projections of the aforementioned random
vectors.

2.2. Joint Distance Covariance

In this subsection, we introduce a new joint dependence mea-
sure called the joint dCov (Jdcov), which is designed to cap-
ture all types of interaction dependence among the d random
vectors. To achieve this goal, we define JdCov as the linear
combination of all kth-order dCov for 1 ≤ k ≤ d.
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Definition 2. The JdCov among {X1, . . . , Xd} is given by

JdCov2(X1, . . . , Xd; C2, . . . , Cd)

=C2
∑

(i1,i2)∈Id
2

dCov2(Xi1 , Xi2) + C3
∑

(i1,i2,i3)∈Id
3

dCov2(Xi1 , Xi2 , Xi3)

+ · · · + Cd dCov2(X1, . . . , Xd),
(5)

for some nonnegative constants Ci ≥ 0 with 2 ≤ i ≤ d.

Proposition 3 states that JdCov completely characterizes joint
independence among {X1, . . . , Xd}.

Proposition 3. Suppose Ci > 0 for 2 ≤ i ≤ d. Then
JdCov2(X1, . . . , Xd; C2, . . . , Cd) = 0 if and only if {X1, . . . , Xd}
are mutually independent.

Next we show that by properly choosing Ci’s, JdCov2(X1, . . . ,
Xd; C2, . . . , Cd) has a relatively simple expression, which does
not require the evaluation of 2d − d − 1 dCov terms in its
original definition (5). Specifically, let Ci = cd−i for c ≥ 0
in the definition of JdCov and denote JdCov2(X1, . . . , Xd; c) =
JdCov2(X1, . . . , Xd; cd−2, cd−1, . . . , 1). Then, we have the fol-
lowing result.

Proposition 4. For any c ≥ 0,

JdCov2(X1, . . . , Xd; c) = E

[ d∏
i=1

(
Ui(Xi, X′

i) + c
)] − cd.

In particular, JdCov2(X1, X2; c) = E[U1(X1, X′
1)U2(X2, X′

2)] =
dCov2(X1, X2).

By (5), the dependence measured by JdCov can be decom-
posed into the main effect term

∑
(i1,i2)∈Id

2
dCov2(Xi1 , Xi2)

quantifying the pairwise dependence as well as the higher-order
effect terms

∑
(i1,i2,...,ik)∈Id

k
dCov2(Xi1 , Xi2 , . . . , Xik) quantifying

the multi-way interaction dependence among any k-tuples. The
choice of c reflects the relative importance of the main effect and
the higher-order effects. For c ≥ 1, Ci = cd−i is nonincreasing
in i. Thus, the larger c we select, the smaller weights we put on
the higher-order terms. In particular, we have

lim
c→+∞ c2−dJdCov2(X1, . . . , Xd; c) =

∑
(i1,i2)∈Id

2

dCov2(Xi1 , Xi2),

that is, JdCov reduces to the main effect term as c → +∞.
We remark that the main effect term fully characterizes joint
dependence in the case of elliptical distribution and it has been
recently used in Yao, Zhang, and Shao (2018) to test mutual
independence for high-dimensional data. On the other hand,
JdCov becomes the dth-order dCov as c → 0, that is,

lim
c→0

JdCov2(X1, . . . , Xd; c) = dCov2(X1, . . . , Xd).

The choice of c depends on the types of interaction dependence
of interest as well as the specific scientific problem, and thus is
left for the user to decide.

It is worth noting that JdCov2(X1, . . . , Xd; c) depends on the
scale of Xi. To obtain a scale-invariant metric, one can normalize
Ui by the corresponding distance variance. Specifically, when
dCov(Xi) := dCov(Xi, Xi) > 0, the resulting quantity is given
by

JdCov2
S(X1, . . . , Xd; c) = E

[ d∏
i=1

(Ui(Xi, X′
i)

dCov(Xi)
+ c

)]
− cd,

which is scale-invariant. Another way to obtain a scale-invariant
metric is presented in Section 2.4 based on the idea of rank
transformation.

Below we present some basic properties of JdCov, which
follow directly from Proposition 1.

Proposition 5. We have the following properties regarding
JdCov:

1. For any ai ∈ Rpi , c0 ∈ R, and orthogonal transformations
Ai ∈ Rpi×pi , JdCov2(a1 + c0A1X1, . . . , ad + c0AdXd; |c0|c) =
|c0|dJdCov2(X1, . . . , Xd; c). Moreover, JdCov is invariant to
any permutation of {X1, X2, . . . , Xd}.

2. For any ai ∈ Rpi , ci �= 0, and orthogonal transformations
Ai ∈ Rpi×pi , JdCov2

S(a1 + c1A1X1, . . . , ad + cdAdXd; c) =
JdCov2

S(X1, . . . , Xd; c).

A natural question to ask is what should be a data-driven
way to choose the tuning parameter c. Although we leave it for
future research, here we present a heuristic idea of choosing c.
In the discussion below Proposition 4 in Section 2.2, we pointed
out that choosing c > 1 (or < 1) puts lesser (or higher)
weightage on the higher-order effects. Note that if the data are
Gaussian, testing for the mutual independence of {X1, . . . , Xd}
is equivalent to testing for their pairwise independences. In that
case, intuitively one should choose a larger (> 1) value of c. If,
however, the data are non-Gaussian, it might be of interest to
look into higher-order dependencies and thus a smaller (< 1)
choice of c makes sense.

To summarize, a heuristic way to choose the tuning parame-
ter c could be

Choose c

{
> 1, if {X1, . . . , Xd} are jointly Gaussian
< 1, if {X1, . . . , Xd} are not jointly Gaussian.

(6)
There is a huge literature on testing for joint normality of ran-

dom vectors (see, e.g., Mardia 1970; Malkovich and Afifi 1973;
Baringhaus and Henze 1988; Bowman and Foster 1993; Henze
and Wagner 1997). It has been shown that the test based on
energy distance is consistent against fixed alternatives (Székely
and Rizzo 2004) and shows higher empirical power compared
to several competing tests (see Székely and Rizzo 2005, 2013).
Suppose p is the p-value of the energy distance-based test for
joint normality of {X1, . . . , Xd} at level α. We expect c to increase
(or decrease) from 1 as p > (or <) α, so one heuristic choice of
c can be

c = 1 + sign(p − α) × |p − α|1/4 , (7)

where sign(x) = 1, 0 or − 1 depending on whether x > 0,
x = 0 or x < 0. For example, p = (0.001, 0.03, 0.0499, 0.0501,
0.1, 0.3) and α = 0.05 yields c = (0.53, 0.62, 0.9, 1.1, 1.47, 1.71).



1642 S. CHAKRABORTY AND X. ZHANG

Table 1. Comparison of various distance metrics for measuring joint dependence of d ≥ 2 random vectors of arbitrary dimensions.

Complete characterization Permutation Scale
Distance metrics of joint independence invariance invariance

dHSIC � � ××× (for fixed bandwidth)
TMT � ××× ×××

High-order dCov ××× (Captures Lancaster interactions) � ×××
JdCov � � ×××

JdCovS � � �
JdCovR � � �

2.3. Distance Cumulant and Distance Characteristic
Function

As noted in Streitberg (1990), for d ≥ 4, the Lancaster inter-
action measure fails to capture all possible factorizations of the
joint distribution. For example, it may not vanish if (X1, X2) ⊥⊥
(X3, X4). Streitberg (1990) corrected the definition of Lancaster
interaction measure using a more complicated construction,
which essentially corresponds to the cumulant version of dCov
in our context. Specifically, Streitberg (1990) proposed a cor-
rected version of Lancaster interaction as follows:

�̃F =
∑
π

(−1)|π |−1(|π | − 1)!
∏
D∈π

FD,

where π is a partition of the set {1,2,…,d}, |π | denotes the
number of blocks of the partition π , and FD denotes the joint
distribution of {Xi : i ∈ D}. It has been shown in Streitberg
(1990) that �̃F = 0 whenever F is decomposable. Our definition
of joint distance cumulant of {X1, . . . , Xd} below can be viewed
as the dCov version of Streitberg’s correction.

Definition 3. The joint distance cumulant among {X1, . . . , Xd}
is defined as

cum(X1, . . . , Xd) =
∑
π

(−1)|π |−1(|π | − 1)!
∏
D∈π

× E

(∏
i∈D

Ui(Xi, X′
i)

)
, (8)

where π runs through all partitions of {1, 2, . . . , d}.

It is not hard to verify that cum(X1, . . . , Xd) = 0 if
{X1, . . . , Xd} can be decomposed into two mutually indepen-
dent groups say (Xi)i∈π1 and (Xj)j∈π2 with π1 and π2 being
a partition of {1, 2, . . . , d}. We further define the distance
characteristic function.

Definition 4. The joint distance characteristic function among
{X1, . . . , Xd} is defined as

dcf(t1, . . . , td) = E

[
exp

(
ı

d∑
i=1

tiUi(Xi, X′
i)

)]
, (9)

for t1, . . . , td ∈ R.

The following result shows that distance cumulant can be
interpreted as the coefficient of the Taylor expansion of the log
distance characteristic function.

Proposition 6. The joint distance cumulant cum(Xi1 , . . . , Xis)
is given by the coefficient of ıs ∏s

k=1 tik in the Taylor expan-
sion of log

{
dcf (t1, . . . , td)

}
, where {i1, . . . , is} is any subset of

{1, 2, . . . , d} with s ≤ d.

Our next result indicates that the mutual independence
among {X1, . . . , Xd} is equivalent to the mutual independence
among {U1(X1, X′

1), . . . , Ud(Xd, X′
d)}.

Proposition 7. The random variables {X1, . . . , Xd} are mutually
independent if and only if
dcf(t1, . . . , td) = ∏d

i=1 dcf(ti) for ti almost everywhere, where
dcf(ti) = E[exp{ıtiUi(Xi, X′

i)}].

2.4. Rank-Based Metrics

In this subsection, we briefly discuss the concept of rank-based
distance measures (Table 1). For simplicity, we assume that
Xi’s are all univariate and remark that our definition can be
generalized to the case where Xi’s are random vectors without
essential difficulty. The basic idea here is to apply the monotonic
transformation based on the marginal distribution functions
to each Xj, and then use the dCov or JdCov to quantify the
interaction and joint dependence of the coordinates after trans-
formation. Therefore, it can be viewed as the counterpart of
Spearman’s rho to dCov or JdCov.

Let Fj be the marginal distribution function for Xj. The
squared rank dCov and JdCov among {X1, . . . , Xd} are defined,
respectively, as

dCov2
R(X1, . . . , Xd) = dCov2(F1(X1), . . . , Fd(Xd)),

JdCov2
R(X1, . . . , Xd; c) = JdCov2(F1(X1), . . . , Fd(Xd); c).

The rank-based dependence metrics enjoy a few appealing
features: (1) they are invariant to monotonic component wise
transformations; (2) they are more robust to outliers and heavy
tail of the distribution; (3) their existence require very weak
moment assumption on the components of X . In Section 5, we
shall compare the finite-sample performance of JdCov2

R with
that of JdCov and JdCovS.

3. Estimation

We now turn to the estimation of the joint dependence metrics.
Given n samples {Xj}n

j=1 with Xj = (Xj1, . . . , Xjd), we consider
the plug-in estimators based on the V-statistics as well as their
bias-corrected versions to be described below. Denote by f̂i(ti) =
n−1 ∑n

j=1 eı〈ti,Xji〉 the empirical characteristic function for Xi.
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3.1. Plug-In Estimators

For 1 ≤ k, l ≤ n, let Ûi(k, l) = n−1 ∑n
v=1 |Xki − Xvi| +

n−1 ∑n
u=1 |Xui−Xli|−|Xki−Xli|−n−2 ∑n

u,v=1 |Xui−Xvi| be the
sample estimate of Ui(Xki, Xli). The V-statistic-type estimators
for dCov, JdCov, and its scale-invariant version are defined,
respectively, as

d̂Cov2(X1, . . . , Xd) = 1
n2

n∑
k,l=1

d∏
i=1

Ûi(k, l)2, (10)

ĴdCov2(X1, . . . , Xd; c)) = 1
n2

n∑
k,l=1

d∏
i=1

(
Ûi(k, l) + c

) − cd,

(11)

ĴdCov2
S(X1, . . . , Xd; c) = 1

n2

n∑
k,l=1

d∏
i=1

(
Ûi(k, l)

d̂Cov(Xi)
+ c

)
− cd,

(12)

where d̂Cov2(Xi) = n−2 ∑n
k,l=1 Ûi(k, l)2 is the sample

(squared) dCov. The following lemma shows that the V-
statistic-type estimators are equivalent to the plug-in estimators
by replacing the characteristic functions and the expectation
in the definitions of dCov and JdCov with their sample
counterparts.

Lemma 2. The sample (squared) dCov can be rewritten as

d̂Cov2(X1, . . . , Xd) =
∫
Rp0

∣∣∣∣∣ 1
n

n∑
k=1

[ d∏
i=1

(f̂i(ti) − eı〈ti,Xki〉)
]∣∣∣∣∣

2

dw.

(13)

Moreover, we have

ĴdCov2(X1, . . . , Xd; c)

= cd−2
∑

(i1,i2)∈Id
2

d̂Cov2(Xi1 , Xi2) + cd−3

×
∑

(i1,i2,i3)∈Id
3

d̂Cov2(Xi1 , Xi2 , Xi3)

+ · · · + d̂Cov2(X1, . . . , Xd).

(14)

Remark 1. Consider the univariate case where pi = 1 for all
1 ≤ i ≤ d. Let F̂i be the empirical distribution based on {Xji}n

j=1
and define Zji = F̂i(Xji). Then, the rank-based metrics defined
in Section 2.4 can be estimated in a similar way by replacing Xji
with Zji in the definitions of the above estimators.

Remark 2. The distance cumulant can be estimated by

ĉum(X1, . . . , Xd) =
∑
π

(−1)|π |−1(|π | − 1)!
∏
D∈π

×
⎧⎨⎩ 1

n2

n∑
k,l=1

(∏
i∈D

Ûi(k, l)

)⎫⎬⎭ .

However, the combinatorial nature of distance cumulant implies
that detecting interactions of higher order requires significantly
more costly computation.

We study the asymptotic properties of the V-statistic-type
estimators under suitable moment assumptions.

Assumption 1. Suppose for any subset S of {1, 2, . . . , d} with
|S| ≥ 2, there exists a partition S = S1 ∪ S2 such that
E

∏
i∈S1 |Xi| < ∞ and E

∏
i∈S2 |Xi| < ∞.

Proposition 8. Under Assumption 1 , we have as n → ∞,

d̂Cov2(X1, . . . , Xd)
a.s−→ dCov2(X1, . . . , Xd),

ĴdCov2(X1, . . . , Xd; c) a.s−→ JdCov2(X1, . . . , Xd; c),

ĴdCov2
S(X1, . . . , Xd; c) a.s−→ JdCov2

S(X1, . . . , Xd; c),

where “ a.s−→ " denotes the almost sure convergence.

When d = 2, Assumption 8 reduces to the condition that
E|X1| < ∞ andE|X2| < ∞ in Theorem 2 of Székely, Rizzo, and
Bakirov (2007). Suppose Xi’s are mutually independent. Then
Assumption 8 is fulfilled provided that E|Xi| < ∞ for all i.
More generally, if E|Xi|	(d+1)/2
 < ∞ for 1 ≤ i ≤ d, then
Assumption 8 is satisfied.

Let �(·) denote a complex-valued zero mean Gaussian
random process with the covariance function R(t, t′) =∏d

i=1
(
fi(ti − t′i) − fi(ti)fi(−t′i)

)
, where t = (t1, t2, . . . , td), t′ =

(t′1, t′2, . . . , t′d) ∈ Rp1 × Rp2 × · · · × Rpd .

Proposition 9. Suppose X1, X2, . . . , Xd are mutually indepen-
dent, and E|Xi| < ∞ for 1 ≤ i ≤ d. Then we have

nd̂cov2(X1, X2, . . . , Xd)
d−→ ‖�‖2 =

+∞∑
j=1

λjZ2
j ,

where ||�||2 = ∫
�(t1, t2, . . . , td)

2dw, Zj
iid∼ N(0, 1) and λj > 0

depends on the distribution of X . As a consequence, we have

nĴdcov2(X1, X2, . . . , Xd; c) d−→
+∞∑
j=1

λ′
jZ

2
j ,

with λ′
j > 0 and Zj

iid∼ N(0, 1).

Proposition 9 shows that both d̂cov2 and Ĵdcov2 converge
to weighted sum of chi-squared random variables, where the
weights depend on the marginal characteristic functions in a
complicated way. Since the limiting distribution is nonpivotal,
we will introduce a bootstrap procedure to approximate their
sampling distributions in the next section.

It has been pointed out in the literature that the computa-
tional complexity of dCov is O(n2) if it is implemented directly
according to its definition. The computational cost of the V-
statistic-type estimators and the bias-corrected estimators for
JdCov are both of the order O(n2p0).

3.2. Bias-Corrected Estimators

It is well known that V-statistic leads to biased estimation.
To remove the bias, one can construct an estimator for the
dth-order dCov based on a dth-order U-statistic. However, the
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computational complexity for the dth-order U-statistic is of the
order O(dnd), which is computationally prohibitive when n and
d are both large. Adopting the U-centering idea in Székely and
Rizzo (2014), we propose bias-corrected estimators which do
not bring extra computational cost as compared to the plug-in
estimators. Specifically, for 1 ≤ i ≤ d, we define the U-centered
version of |Xki − Xli| as

Ũi(k, l) = 1
n − 2

n∑
u=1

|Xui − Xli|

+ 1
n − 2

n∑
v=1

|Xki − Xvi| − |Xki − Xli|

− 1
(n − 1)(n − 2)

n∑
u,v=1

|Xui − Xvi|

when k �= l, and Ũi(k, l) = 0 when k = l. One can
verify that

∑
v �=k Ũi(k, v) = ∑

u�=l Ũi(u, l) = 0, which
mimics the double-centered property E[Ui(Xi, X′

i)|Xi] =
E[Ui(Xi, X′

i)|X′
i] = 0 for its population counterpart. Let

d̃Cov2(Xi, Xj) = ∑
k�=l Ũi(k, l)Ũj(k, l)/{n(n − 3)} and write

d̃Cov(Xi) = d̃Cov(Xi, Xi). We define the bias-corrected
estimators as

J̃dCov2(X1, . . . , Xd; c)

= 1
n(n − 3)

n∑
k,l=1

d∏
i=1

(
Ũi(k, l) + c

) − n
n − 3

cd,

J̃dCov2
S(X1, . . . , Xd; c)

= 1
n(n − 3)

n∑
k,l=1

d∏
i=1

(
Ũi(k, l)

d̃Cov(Xi)
+ c

)
− n

n − 3
cd.

Direct calculation yields that

J̃dCov2(X1, . . . , Xn; c) = cd−2
∑

(i,j)∈Id
2

d̃Cov
2
(Xi, Xj)

+ higher-order terms. (15)

It has been shown in Proposition 1 of Székely and Rizzo (2014)
that d̃Cov

2
(Xi, Xj) is an unbiased estimator for dCov2(Xi, Xj).

In the supplementary material, we provide an alternative
proof which simplifies the arguments in Székely and Rizzo
(2014). Our argument relies on a new decomposition of
Ũi(k, l), which provides some insights on the U-centering idea.
See Lemma 1.1 and Proposition 1.2 in the supplementary
material. In view of (15) and Proposition 1.2, the main effect
in JdCov2(X1, . . . , Xn; c) can be unbiasedly estimated by the
main effect of J̃dCov2(X1, . . . , Xn; c). However, it seems very
challenging to study the impact of U-centering on the bias of
the high-order effect terms. We shall leave this problem to our
future research.

4. Testing for Joint Independence

In this section, we consider the problem of testing the null
hypothesis

H0 : X1, . . . , Xd are mutually independent (16)
against the alternative HA : negation of H0. For the purpose of
illustration, we use nĴdCov2 as our test statistic and set

φn(X1, . . . , Xn) :=
⎧⎨⎩1 if nĴdCov2(X1, . . . , Xd) > cn ,

0 if nĴdCov2(X1, . . . , Xd) ≤ cn ,
(17)

where the threshold cn remains to be chosen. Consequently, we
define a decision rule as follows: reject H0 if φn = 1 and fail to
reject H0 if φn = 0.

Below we introduce a bootstrap procedure to approximate
the sampling distribution of nĴdCov under H0. Let F̂i be
the empirical distribution function based on the data points
{Xji}n

j=1. Conditional on the original sample, we define X∗
j =

(X∗
j1, . . . , X∗

jd), where X∗
ji are generated independently from F̂i

for 1 ≤ i ≤ d. Let {X∗
j }n

j=1 be n bootstrap samples. Then we

can compute the bootstrap statistics d̂Cov2
∗

and ĴdCov2
∗

in the
same way as d̂Cov2 and ĴdCov2 based on {X∗

j }n
j=1. In particular,

we note that the bootstrap version of the dth-order dCov is given
by

nd̂Cov2
∗
(X1, . . . , Xd) = ‖�∗

n‖2 =
∫

�∗
n(t1, . . . , td)

2dw,

where

�∗
n(t) = n−1/2

n∑
j=1

d∏
i=1

( ˆf ∗
i (ti) − eı〈ti,X∗

ji〉).

Denote by “ d∗−→ " the weak convergence in the bootstrap world
conditional on the original sample {Xj}n

j=1.

Proposition 10. Suppose E|Xi| < ∞ for 1 ≤ i ≤ d. Then

nd̂Cov2
∗
(X1, . . . , Xd)

d∗−→
+∞∑
j=1

λjZ2
j ,

nĴdCov2
∗
(X1, . . . , Xd)

d∗−→
+∞∑
j=1

λ′
jZ

2
j ,

almost surely as n → ∞.

Proposition 10 shows that the bootstrap statistic is able to
imitate the limiting distribution of the test statistic. Thus, we
shall choose cn to be the 1 − α quantile of the distribution of
nĴdCov2

∗
conditional on the sample {Xj}n

j=1. The validity of the
bootstrap-assisted test can be justified as follows.

Proposition 11. For all α ∈ (0, 1), the α-level bootstrap-assisted
test has asymptotic level α when testing H0 against HA. In other
words, under H0, lim sup

n→∞
P ( φn(X1, . . . , Xn) = 1 ) = α .

Proposition 12. For all α ∈ (0, 1), the α-level bootstrap-assisted
test is consistent when testing H0 against HA. In other words,
under HA, lim

n→∞ P ( φn(X1, . . . , Xn) = 1 ) = 1.
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5. Numerical Studies

We investigate the finite-sample performance of the proposed
methods. Our first goal is to test the joint independence among
the variables {X1, . . . , Xd} using the new dependence metrics,
and compare the performance with some existing alternatives
in the literature in terms of size and power. Throughout the
simulation, we set c = 0.5, 1, 2 in JdCov and implement the
bootstrap-assisted test based on the bias-corrected estimators.
We compare our tests with the dHSIC-based test in Pfister et al.
(2018) and the mutual independence test proposed in Matteson
and Tsay (2017), which is defined as

TMT :=
d−1∑
i=1

dCov2(Xi, X(i+1):d), (18)

where X(i+1):d = {Xi+1, Xi+2, . . . , Xd}. We consider both
Gaussian and non-Gaussian distributions and study the
following models, motivated from Sejdinovic, Gretton, and
Bergsma (2013) and Yao, Zhang, and Shao (2018).

Example 1 (Gaussian copula model). The data X = (X1, . . . , Xd)
are generated as follows:

1. X ∼ N(0, Id);
2. X = Z1/3 and Z ∼ N(0, Id);
3. X = Z3 and Z ∼ N(0, Id).

Example 2 (Multivariate Gaussian model). The data X =
(X1, . . . , Xd) are generated from the multivariate normal
distribution with the following three covariance matrices � =
(σij(ρ))d

i,j=1 with ρ = 0.25:

1. AR(1): σij = ρ|i−j| for all i, j ∈ {1, . . . , d};
2. Banded: σii = 1 for i = 1, . . . , d; σij = ρ if 1 ≤ |i − j| ≤ 2

and σij = 0 otherwise;
3. Block: Define �block = (σij)

5
i,j=1 with σii = 1 and σij = ρ

if i �= j. Let � = I	d/5
 ⊗ �block, where ⊗ denotes the
Kronecker product.

Example 3. The data X = (X, Y , Z) are generated as follows:

1. X, Y iid∼ N(0, 1), Z = sign(XY) W, where W follows an
exponential distribution with mean

√
2;

2. X, Y are independent Bernoulli random variables with the
success probability 0.5, and Z = 1{X = Y}.

Example 4. In this example, we consider a triplet of random
vectors (X, Y , Z) on Rp × Rp × Rp, with X, Y iid∼ N(0, Ip). We
focus on the following cases:

1. Z1 = sign(X1Y1) W and Z2:p ∼ N(0, Ip−1), where W follows
an exponential distribution with mean

√
2;

2. Z2:p ∼ N(0, Ip−1) and

Z1 =

⎧⎪⎨⎪⎩
X2

1 + ε, with probability 1/3,
Y2

1 + ε, with probability 1/3,
X1Y1 + ε, with probability 1/3,

where ε ∼ U(−1, 1).

We conduct tests for joint independence among the random
variables described in the above examples. For each example,
we draw 1000 simulated datasets and perform tests of joint
independence with 500 bootstrap resamples. We try small and
moderate sample sizes, that is, n = 50, 100, or 200. Figures 1 and
2 display the proportion of rejections (out of 1000 simulation
runs) for the five different tests, based on the statistics J̃dCov2,
J̃dCov2

S, ˜JdCov2
R, dHSIC, and TMT . The detailed figures are

reported in Tables 1 and 2 in the supplementary materials.
In Example 1, the data-generating scheme suggests that the

variables are jointly independent. The plots in Figure 1 show
that all the five tests perform more or less equally well in Exam-
ples 1.1 and 1.2, and the rejection probabilities are quite close
to the 10% or 5% nominal level. In Example 1.3, the tests
based on our proposed statistics show greater conformation of
the empirical size to the actual size of the test than TMT . In
Example 2, the tests based on J̃dCov2, J̃dCov2

S, and ˜JdCov2
R as

well as TMT significantly outperform the dHSIC-based test. Note
that the empirical power becomes higher when c increases to 2.
From Figure 2, we observe that in Example 3 all the tests perform
very well in the second case. However, in the first case, our tests
and the dHSIC-based test deliver higher power as compared
to TMT . Finally, in Example 4, we allow X, Y , Z to be random
vectors with dimension p = 5, 10. The rejection probabilities
for each of the five tests increase with n, and the proposed tests
provide better performances in comparison with the other two
competitors. In particular, the test based on J̃dCov2

S outperforms
all the others in a majority of the cases. In Examples 3 and 4, the
power becomes higher when c decreases to 0.5. These results
are consistent with our statistical intuition and the discussions
in Section 2.2. For the Gaussian copula model, only the main
effect term matters, so a larger c is preferable. For non-Gaussian
models, the high-order terms kick in and hence a smaller c may
lead to higher power.

We have considered U-statistic-type estimators of JdCov2,
JdCov2

S, and JdCov2
R so far in all the above computations, as

they remove the bias due to the main effects (see Section 3.2).
However, it might be interesting to see if the bias correction has
any empirical impact. We conduct tests for joint independence
of the random variables in some of the above examples, this time
using the V-statistic-type estimators (described in Section 3.1).
Table 4 (in the supplementary materials) shows the proportion
of rejections (out of 1000 simulation runs) for the tests based
on ĴdCov2, ĴdCov2

S, and ̂JdCov2
R, setting c = 1. The results

indicate that use of the bias-corrected estimators lead to greater
conformation of the empirical size to the actual size of the test
(in Example 1), and slightly better power in Example 3.

In connection to the heuristic idea discussed in Section 2.2
about choosing the tuning parameter c, we conduct tests for
joint independence of the random variables in all the above
examples, choosing c in that way. Table 4 (in the supplementary
materials) presents the proportion of rejections for the proposed
tests and the values of c for each example, averaged over the 1000
simulated datasets. The plots in Figures 1 and 2 reveal some
interesting features. In Example 2, we have Gaussian data, so
a larger c is preferable. Clearly the proportion of rejections is
a little higher (or lower) in most of the cases when we choose
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Figure 1. Figures showing the empirical size and power for the different tests statistics in Examples 1 and 2. c∗ denotes the data-driven choice of c. The vertical height of
a bar and a line on a bar stand for the empirical size or power at levels α = 0.1 or α = 0.05, respectively.
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Figure 2. Figures showing the empirical power for the different tests statistics in Examples 3 and 4. c∗ denotes the data-driven choice of c. The vertical height of a bar and
a line on a bar stand for the empirical power at levels α = 0.1 or α = 0.05, respectively.

c in the data-driven way (c turns out to be around 1.6 or 1.7),
than when c is subjectively chosen to be 0.5 (or 2). On the
contrary, in Example 3, the data are non-Gaussian and a smaller
c is preferable. Evidently choosing c in the data-driven way leads
to nearly equally good power compared to when c = 0.5, and
higher power compared to when c = 2.

6. Application to Causal Inference

6.1. Model Diagnostic Checking for Directed Acyclic Graph
(DAG)

We employ the proposed metrics to perform model selection
in causal inference which is based on the joint independence
testing of the residuals from the fitted structural equation mod-
els. Specifically, given a candidate DAG G, we let Par(j) denote
the index associated with the parents of the jth node. Following
Peters et al. (2014) and Bühlmann, Peters, and Ernest (2014),
we consider the structural equation models with additive com-
ponents

Xj =
∑

k∈Par(j)
fj,k(Xk) + εj , j = 1, 2, . . . , d, (19)

where the noise variables ε1, . . . , εd are jointly indepen-
dent variables. Given n observations {Xi}n

i=1 with Xi =
(Xi1, . . . , Xid), we use generalized additive regression (Wood
and Augustin 2002) to regress Xj on all its parents {Xk, k ∈
Par(j)} and denote the resulting residuals by

ε̂ij = Xij −
∑

k∈Par(j)
f̂j,k(Xik), 1 ≤ j ≤ d, 1 ≤ i ≤ n,

where f̂j,k is the B-spline estimator for fj,k. To check the goodness
of fit of G, we test the joint independence of the residuals. Let
Tn be the statistic (e.g., J̃dCov2, J̃dCov2

S, or ˜JdCov2
R) to test the

joint dependence of (ε1, . . . , εd) constructed based on the fitted
residuals ε̂i = (ε̂i1, . . . , ε̂id) for 1 ≤ i ≤ n. Following the
idea presented in Sen and Sen (2014), it seems that Tn might
have a limiting distribution different from the one mentioned
in Proposition 9. So to approximate the sampling distribution
of Tn, we introduce the following residual bootstrap procedure.

1. Randomly sample ε∗
j = (ε∗

1j, . . . , ε∗
nj) with replacement from

the residuals {ε̂1j, . . . , ε̂nj}, 1 ≤ j ≤ d. Construct the
bootstrap sample X∗

ij = ∑
k∈Par(j) f̂j,k(Xik) + ε∗

ij .
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Figure 3. The DAG models corresponding to the largest p-values from the five tests.

2. Based on the bootstrap sample {X∗
i }n

i=1 with X∗
i = (X∗

i1, . . . ,
X∗

id), estimate fj,k for k ∈ Par(j), and denote the correspond-
ing residuals by ε̂∗

ij .
3. Calculate the bootstrap statistic T∗

n based on {ε̂∗
ij}.

4. Repeat the above steps B times and let {T∗
b,n}B

b=1 be the
corresponding values of the bootstrap statistics. The p-value
is given by B−1 ∑B

b=1{T∗
b,n > Tn}.

Pfister et al. (2018) proposed to bootstrap the residuals directly
and used the bootstrapped residuals to construct the test statis-
tic. In contrast, we suggest the use of the above residual boot-
strap to capture the estimation effect caused by replacing fj,k with
the estimate f̂j,k.

6.2. Real Data Example

We now apply the model diagnostic checking procedure for
DAG to one real world dataset. A population of women
who were at least 21 years old, of Pima Indian heritage
and living near Phoenix, Arizona, was tested for diabetes
according to World Health Organization criteria. The data
were collected by the U.S. National Institute of Diabetes and
Digestive and Kidney Diseases. We downloaded the data from
https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes.
We focus only on the following five variables: Age, Body Mass
Index (BMI), 2-Hour Serum Insulin (SI), Plasma Glucose
Concentration (glu), and Diastolic Blood Pressure (DBP).
Further, we only selected the instances with nonzero values,
as it seems that zero values encode missing data. This yields
n = 392 samples.

Now, age is likely to affect all the other variables (but of course
not the other way round). Moreover, serum insulin also has
plausible causal effects on BMI and plasma glucose concentra-
tion. We try to determine the correct causal structure out of 48
candidate DAG models and perform model diagnostic checking
for each of the 48 models, as illustrated in Section 6.1. We first
center each of the variables and scale them so that l2 norm of
each of the variables is

√
n. We perform the mutual indepen-

dence test of residuals based on the statistics J̃dCov2, J̃dCov2
S,

and ˜JdCov2
R with c = 1, and compare with the bootstrap-

assisted version of the dHSIC-based test proposed in Pfister et al.
(2018) and TMT . For each of the tests, we implement the residual
bootstrap to obtain the p-value with B = 1000. Figure 3 shows
the selected DAG models corresponding to the largest p-values
from each of the five tests. A directed edge from one variable to
another indicates a causal influence of the former on the latter.

Figure 3(a) shows the model with the maximum p-value
among all the 48 candidate DAG models, when the test for joint
independence of the residuals is conducted based on J̃dCov2,
J̃dCov2

S, and ˜JdCov2
R and TMT . This graphical structure goes in

tune with the biological evidences of causal relationships among
these five variables. Figure 3(b) stands for the model with the
maximum p-value when the test is based on dHSIC. Its only
difference with Figure 3(a) is that, it has an additional edge
from glu to DBP, indicating a causal effect of Plasma Glucose
Concentration on Diastolic Blood Pressure. We are unsure of
any biological evidence that supports such a causal relationship
in reality.

It might be intriguing to take into account the heuristic data-
driven way of determining c (see Section 2.2) in the above
example, instead of setting c at a default value of 1. Our findings
indicate that choosing c in the data-driven way leads to a slightly
different result. The tests based on dHSIC and J̃dCov2

S select the
DAG model shown in Figure 3(b) (considering the maximum
p-value among all the 48 candidate DAG models), whereas
Figure 3(a) is the DAG model selected when the test is based on
J̃dCov2, ˜JdCov2

R, and TMT . The proposed tests (based on J̃dCov2

and ˜JdCov2
R) still perform well.

6.3. A Simulation Study

We conduct a simulation study based on our findings in the
previous real data example. To save the computational cost, we
focus our attention on three of the five variables, viz., age, glu,
and DBP. In the correct causal structure among these three
variables, there are directed edges from age to glu and age to
DBP. We consider the additive structural equation models

Xj =
∑

k∈Par(j)
f̂j,k(Xk) + ej , j = 1, 2, 3, (20)

where X1, X2, X3 correspond to age, glu, and DBP (after cen-
tering and scaling), respectively, and f̂j,k denotes the estimated
function from the real data. Note that X1 is the only variable
without any parent. In Section 6.2, we get from our numerical
studies that the standard deviation of X1 is 1.001, and the stan-
dard deviations of the residuals when X2 and X3 are regressed
on X1 (according to the structural equation models in (19)),
are 0.918 and 0.95, respectively. In this simulation study, we
simulate X1 from a zero mean Gaussian distribution with stan-
dard deviation 1. For X2 and X3, we simulate the noise variables
from zero mean Gaussian distributions with standard deviations
0.918 and 0.95, respectively. The same n = 392 is considered
for the number of generated observations, and based on this
simulated dataset we perform the model diagnostic checking
for 27 candidate DAG models. The number of bootstrap repli-
cations is set to be B = 100 (to save the computational cost).
This procedure is repeated 100 times to note how many times
out of 100 that the five tests select the correct model, based
on the largest p-value. The results in Table 2 indicate that the
proposed tests with c = 1 and the dHSIC-based test outperform
TMT .

A natural question to raise is why do we bootstrap the resid-
uals and not test for the joint independence of the estimated
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Table 2. The number of times (out of 100) that the true model is being selected.

˜JdCov2 ˜JdCov2
S

˜JdCov2
R dHSIC TMT

45 61 54 52 32

Figure 4. The DAG models selected (most frequently out of 100 times) by the five
tests, without doing residual bootstrap to reestimate fj,k .

residuals directly, to check for the goodness of fit of the DAG
model. From the idea in Sen and Sen (2014), it appears that
the joint distance covariance of the estimated residuals might
have a limiting distribution different from the one stated in
Proposition 9. We leave the formulation of a rigorous theory in
support of that for future research. We present below the models
selected most frequently (out of 100 times) by the different test
statistics if we repeat the simulation study done above in Sec-
tion 6.3 without using residual bootstrap to reestimate fj,k. We
immediately see that joint independence tests of the estimated
residuals based on all of the five statistics we consider, select a
DAG model that is meaningless and far away from the correct
one.

It might be intriguing to take into account the heuristic data-
driven way of choosing c (see Section 2.2) in the simulation
study in Section 6.3, instead of setting c at a default value of 1.
Our findings indicate that our proposed tests and the dHSIC-
based test still outperform TMT . If we repeat the simulation
study done in Section 6.3 (choosing c in the heuristic way)
without using residual bootstrap to reestimate fj,k, we still end
up selecting the same models presented in Figure 4.

7. Future Research

Huo and Székely (2016) proposed an O(n log n) algorithm to
compute dCov of univariate random variables. In a more recent
work, Huang and Huo (2017) introduced a fast method for
multivariate cases which is based on random projection and has
computational complexity O(nK log n), where K is the number
of random projections. One of the possible directions for future
research is to come up with a fast algorithm to compute JdCov.
When pi = 1, we can indeed use the method in Huo and Székely
(2016) to compute JdCov. But their method may be inefficient
when d is large and it is not applicable to the case where pi > 1.
Another direction is, to introduce the notion of Conditional
JdCov in light of Wang et al. (2015), to test if the variables
(X1, . . . , Xd) are jointly independent given another variable Z.

Supplementary Materials

The supplementary materials contain some additional proofs of the main
results in the article and tabulated numerical results from Section 5.
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